482 research outputs found

    Underlay Drone Cell for Temporary Events: Impact of Drone Height and Aerial Channel Environments

    Full text link
    Providing seamless connection to a large number of devices is one of the biggest challenges for the Internet of Things (IoT) networks. Using a drone as an aerial base station (ABS) to provide coverage to devices or users on ground is envisaged as a promising solution for IoT networks. In this paper, we consider a communication network with an underlay ABS to provide coverage for a temporary event, such as a sporting event or a concert in a stadium. Using stochastic geometry, we propose a general analytical framework to compute the uplink and downlink coverage probabilities for both the aerial and the terrestrial cellular system. Our framework is valid for any aerial channel model for which the probabilistic functions of line-of-sight (LOS) and non-line-of-sight (NLOS) links are specified. The accuracy of the analytical results is verified by Monte Carlo simulations considering two commonly adopted aerial channel models. Our results show the non-trivial impact of the different aerial channel environments (i.e., suburban, urban, dense urban and high-rise urban) on the uplink and downlink coverage probabilities and provide design guidelines for best ABS deployment height.Comment: This work is accepted to appear in IEEE Internet of Things Journal Special Issue on UAV over IoT. Copyright may be transferred without notice, after which this version may no longer be accessible. arXiv admin note: text overlap with arXiv:1801.0594

    Coverage and Rate Analysis for Unmanned Aerial Vehicle Base Stations with LoS/NLoS Propagation

    Full text link
    The use of unmanned aerial vehicle base stations (UAV-BSs) as airborne base stations has recently gained great attention. In this paper, we model a network of UAV-BSs as a Poisson point process (PPP) operating at a certain altitude above the ground users. We adopt an air-to-ground (A2G) channel model that incorporates line-of-sight (LoS) and non-line-of-sight (NLoS) propagation. Thus, UAV-BSs can be decomposed into two independent inhomogeneous PPPs. Under the assumption that NLoS and LoS channels experience Rayleigh and Nakagami-m fading, respectively, we derive approximations for the coverage probability and average achievable rate, and show that these approximations match the simulations with negligible errors. Numerical simulations have shown that the coverage probability and average achievable rate decrease as the height of the UAV-BSs increases

    Echo State Learning for Wireless Virtual Reality Resource Allocation in UAV-enabled LTE-U Networks

    Full text link
    In this paper, the problem of resource management is studied for a network of wireless virtual reality (VR) users communicating using an unmanned aerial vehicle (UAV)-enabled LTE-U network. In the studied model, the UAVs act as VR control centers that collect tracking information from the VR users over the wireless uplink and, then, send the constructed VR images to the VR users over an LTE-U downlink. Therefore, resource allocation in such a UAV-enabled LTE-U network must jointly consider the uplink and downlink links over both licensed and unlicensed bands. In such a VR setting, the UAVs can dynamically adjust the image quality and format of each VR image to change the data size of each VR image, then meet the delay requirement. Therefore, resource allocation must also take into account the image quality and format. This VR-centric resource allocation problem is formulated as a noncooperative game that enables a joint allocation of licensed and unlicensed spectrum bands, as well as a dynamic adaptation of VR image quality and format. To solve this game, a learning algorithm based on the machine learning tools of echo state networks (ESNs) with leaky integrator neurons is proposed. Unlike conventional ESN based learning algorithms that are suitable for discrete-time systems, the proposed algorithm can dynamically adjust the update speed of the ESN's state and, hence, it can enable the UAVs to learn the continuous dynamics of their associated VR users. Simulation results show that the proposed algorithm achieves up to 14% and 27.1% gains in terms of total VR QoE for all users compared to Q-learning using LTE-U and Q-learning using LTE

    Unmanned Aerial Vehicle with Underlaid Device-to-Device Communications: Performance and Tradeoffs

    Full text link
    In this paper, the deployment of an unmanned aerial vehicle (UAV) as a flying base station used to provide on the fly wireless communications to a given geographical area is analyzed. In particular, the co-existence between the UAV, that is transmitting data in the downlink, and an underlaid device-todevice (D2D) communication network is considered. For this model, a tractable analytical framework for the coverage and rate analysis is derived. Two scenarios are considered: a static UAV and a mobile UAV. In the first scenario, the average coverage probability and the system sum-rate for the users in the area are derived as a function of the UAV altitude and the number of D2D users. In the second scenario, using the disk covering problem, the minimum number of stop points that the UAV needs to visit in order to completely cover the area is computed. Furthermore, considering multiple retransmissions for the UAV and D2D users, the overall outage probability of the D2D users is derived. Simulation and analytical results show that, depending on the density of D2D users, optimal values for the UAV altitude exist for which the system sum-rate and the coverage probability are maximized. Moreover, our results also show that, by enabling the UAV to intelligently move over the target area, the total required transmit power of UAV while covering the entire area, is minimized. Finally, in order to provide a full coverage for the area of interest, the tradeoff between the coverage and delay, in terms of the number of stop points, is discussed.Comment: accepted in the IEEE Transactions on Wireless Communication
    corecore