13 research outputs found

    Wireless Power Transfer in Massive MIMO Aided HetNets with User Association

    Get PDF
    This paper explores the potential of wireless power transfer (WPT) in massive multiple input multiple output (MIMO) aided heterogeneous networks (HetNets), where massive MIMO is applied in the macrocells, and users aim to harvest as much energy as possible and reduce the uplink path loss for enhancing their information transfer. By addressing the impact of massive MIMO on the user association, we compare and analyze two user association schemes. We adopt the linear maximal ratio transmission beam-forming for massive MIMO power transfer to recharge users. By deriving new statistical properties, we obtain the exact and asymptotic expressions for the average harvested energy. Then we derive the average uplink achievable rate under the harvested energy constraint.Comment: 36 pages, 11 figures, to appear in IEEE Transactions on Communication

    Analysis of Statistical QoS in Half Duplex and Full Duplex Dense Heterogeneous Cellular Networks

    Get PDF
    Statistical QoS provisioning as an important performance metric in analyzing next generation mobile cellular network, aka 5G, is investigated. In this context, by quantifying the performance in terms of the effective capacity, we introduce a lower bound for the system performance that facilitates an efficient analysis. Based on the proposed lower bound, which is mainly built on a per resource block analysis, we build a basic mathematical framework to analyze effective capacity in an ultra dense heterogeneous cellular network. We use our proposed scalable approach to give insights about the possible enhancements of the statistical QoS experienced by the end users if heterogeneous cellular networks migrate from a conventional half duplex to an imperfect full duplex mode of operation. Numerical results and analysis are provided, where the network is modeled as a Matern point process. The results demonstrate the accuracy and computational efficiency of the proposed scheme, especially in large scale wireless systems. Moreover, the minimum level of self interference cancellation for the full duplex system to start outperforming its half duplex counterpart is investigated.Comment: arXiv admin note: substantial text overlap with arXiv:1604.0058

    Stochastic geometry approach towards interference management and control in cognitive radio network : a survey

    Get PDF
    Interference management and control in the cognitive radio network (CRN) is a necessity if the activities of primary users must be protected from excessive interference resulting from the activities of neighboring users. Hence, interference experienced in wireless communication networks has earlier been characterized using the traditional grid model. Such models, however, lead to non-tractable analyses, which often require unrealistic assumptions, leading to inaccurate results. These limitations of the traditional grid models mean that the adoption of stochastic geometry (SG) continues to receive a lot of attention owing to its ability to capture the distribution of users properly, while producing scalable and tractable analyses for various performance metrics of interest. Despite the importance of CRN to next-generation networks, no survey of the existing literature has been done when it comes to SG-based interference management and control in the domain of CRN. Such a survey is, however, necessary to provide the current state of the art as well as future directions. This paper hence presents a comprehensive survey related to the use of SG to effect interference management and control in CRN. We show that most of the existing approaches in CRN failed to capture the relationship between the spatial location of users and temporal traffic dynamics and are only restricted to interference modeling among non-mobile users with full buffers. This survey hence encourages further research in this area. Finally, this paper provides open problems and future directions to aid in finding more solutions to achieve efficient and effective usage of the scarce spectral resources for wireless communications.The SENTECH Chair in Broadband Wireless Multimedia Communications (BWMC), Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa.http://www.elsevier.com/locate/comcomhj2022Electrical, Electronic and Computer Engineerin

    Energy aware management of 5G networks

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringBalasubramaniam NatarajanThe number of wireless devices is predicted to skyrocket from about 5 billion in 2015 to 25 billion by 2020. Therefore, traffic volume demand is envisioned to explode in the very near future. The proposed fifth generation (5G) of mobile networks is expected to be a mixture of network components with different sizes, transmit powers, back-haul connections and radio access technologies. While there are many interesting problems within the 5G framework, we address the challenges of energy-related management in a heterogeneous 5G networks. Based on the 5G architecture, in this dissertation, we present some fundamental methodologies to analyze and improve the energy efficiency of 5G network components using mathematical tools from optimization, control theory and stochastic geometry. Specifically, the main contributions of this research include: • We design power-saving modes in small cells to maximize energy efficiency. We first derive performance metrics for heterogeneous cellular networks with sleep modes based on stochastic geometry. Then we quantify the energy efficiency and maximize it with quality-of-service constraint based on an analytical model. We also develop a simple sleep strategy to further improve the energy efficiency according to traffic conditions. • We conduct a techno-economic analysis of heterogeneous cellular networks powered by both on-grid electricity and renewable energy. We propose a scheme to minimize the electricity cost based on a real-time pricing model. • We provide a framework to uncover desirable system design parameters that offer the best gains in terms of ergodic capacity and average achievable throughput for device-to-device underlay cellular networks. We also suggest a two-phase scheme to optimize the ergodic capacity while minimizing the total power consumption. • We investigate the modeling and analysis of simultaneous information and energy transfer in Internet of things and evaluate both transmission outage probability and power outage probability. Then we try to balance the trade-off between the outage performances by careful design of the power splitting ratio. This research provides valuable insights related to the trade-offs between energy-conservation and system performance in 5G networks. Theoretical and simulation results help verify the performance of the proposed algorithms

    Stochastic geometric analysis of energy efficiency in two-tier heterogeneous networks

    Get PDF
    The exponential growth in the number of users of cellular mobile networks (and their requirements) has created a massive challenge for network operators to cope with demands for coverage and data rates. Among the possible solutions for the ever increasing user needs, the deployment of Heterogeneous Networks (HetNets) constitutes both a practical and an economical solution. Moreover, while the typical approach for network operators has been to consider the coverage and data rates as design parameters in a network, a major concern for next generation networks is the efficiency in the power usage of the network. Therefore, in recent years the energy efficiency parameter has gathered a great deal of attention in the design of next generation networks. In the context of HetNets, while the densification of the network in terms of the number of base stations deployed can potentially increase the coverage and boost the data rates, it can also lead to a huge power consumption as the energy used escalates with the number of base stations deployed. To this end, the purpose of this thesis is to investigate the energy efficiency performance of different deployment strategies in a HetNet consisting of macro- and femtocells. We make use of well established tools from stochastic geometry to model the different strategies, as it provides a theoretical framework from which the scalability of the network in terms of the design parameters can be taken into account. Those strategies consisted first, on the analysis of the effect of using multiple antennas and diversity schemes on both, the throughput and the energy efficiency of the network. The optimum diversity schemes and antenna configurations were found for an optimal energy efficiency while keeping constraints on the quality of Service of both tiers. Then, the effect of the vertical antenna tilt was analyzed for both, a traditional macrocell only network and a two-tier network. The optimum antenna tilt in terms of energy efficiency was found while keeping constraints on the Quality of Service required. Finally, an energy efficient deployment of femtocells was proposed where the smart positioning of femtocells derived into improvements of coverage probability, effective throughput and energy efficiency of the network. The proposed model also improved in general the performance of the cell edge user which in turn resulted in a more balanced network in terms of the overall performance

    A Stochastic Geometry approach towards Green Communications in 5G

    Get PDF
    In this dissertation, we investigate two main research directions towards net- work efficiency and green communications in heterogeneous cellular networks (HetNets) as a promising network structure for the fifth generation of mobile systems. In order to analyze the networks, we use a powerful mathematical tool, named stochastic geometry. In our research, first we study the performance of MIMO technology in single-tier and two-tier HetNets. In this work, we apply a more realistic network model in which the correlation between tiers is taken into account. Comparing the obtained results with the commonly used model shows performance enhancement and greater efficiencies in cellular networks. As the second part of our research, we apply two Cell Zooming (CZ) techniques to HetNets. With focus on green communications, we present a K−tier HetNet in which BSs are only powered by energy har- vesting. Despite the uncertain nature of energy arrivals, combining two CZ techniques, namely telescopic and ON/OFF scenarios, enables us to achieve higher network performance in terms of the coverage and blocking probabilities while reducing the total power consumption and increasing the energy and spectral efficiencies
    corecore