383 research outputs found

    Scheduling and Resource Allocation for SVC Streaming over OFDM Downlink Systems

    Get PDF
    info:eu-repo/semantics/publishe

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Energy-Efficient Non-Orthogonal Transmission under Reliability and Finite Blocklength Constraints

    Full text link
    This paper investigates an energy-efficient non-orthogonal transmission design problem for two downlink receivers that have strict reliability and finite blocklength (latency) constraints. The Shannon capacity formula widely used in traditional designs needs the assumption of infinite blocklength and thus is no longer appropriate. We adopt the newly finite blocklength coding capacity formula for explicitly specifying the trade-off between reliability and code blocklength. However, conventional successive interference cancellation (SIC) may become infeasible due to heterogeneous blocklengths. We thus consider several scenarios with different channel conditions and with/without SIC. By carefully examining the problem structure, we present in closed-form the optimal power and code blocklength for energy-efficient transmissions. Simulation results provide interesting insights into conditions for which non-orthogonal transmission is more energy efficient than the orthogonal transmission such as TDMA.Comment: accepted by IEEE GlobeCom workshop on URLLC, 201

    Bandwidth-guaranteed fair scheduling with effective excess bandwidth allocation for wireless networks

    Get PDF
    Traffic scheduling is key to the provision of quality of service (QoS) differentiation and guarantees in wireless networks. Unlike its wireline counterpart, wireless communications pose special channel-specific problems such as time-varying link capacities and location-dependent errors. These problems make designing efficient and effective traffic scheduling algorithms for wireless networks very challenging. Although many wireless packet scheduling algorithms have been proposed in recent years, issues such as how to improve bandwidth efficiency and maintain goodput fairness with various link qualities for power-constrained mobile hosts remain unresolved. In this paper, we devise a simple wireless packet scheduling algorithm called bandwidth-guaranteed fair scheduling with effective excess bandwidth allocation (BGFS-EBA), which addresses these issues. Our studies reveal that BGFS-EBA effectively distributes excess bandwidth, strikes a balance between effort-fair and outcome-fair, and provides a delay bound for error-free flows and transmission effort guarantees for error-prone flows. © 2008 IEEE.published_or_final_versio
    • …
    corecore