155 research outputs found

    Downlink Small-cell Base Station Cooperation Strategy in Fractal Small-cell Networks

    Full text link
    Coordinated multipoint (CoMP) communications are considered for the fifth-generation (5G) small-cell networks as a tool to improve the high data rates and the cell-edge throughput. The average achievable rates of the small-cell base stations (SBS) cooperation strategies with distance and received signal power constraints are respectively derived for the fractal small-cell networks based on the anisotropic path loss model. Simulation results are presented to show that the average achievable rate with the received signal power constraint is larger than the rate with a distance constraint considering the same number of cooperative SBSs. The average achievable rate with distance constraint decreases with the increase of the intensity of SBSs when the anisotropic path loss model is considered. What's more, the network energy efficiency of fractal smallcell networks adopting the SBS cooperation strategy with the received signal power constraint is analyzed. The network energy efficiency decreases with the increase of the intensity of SBSs which indicates a challenge on the deployment design for fractal small-cell networks.Comment: 5 figures. Accepted by Globecom 201

    QoE Driven Multimedia Service Schemes in Wireless Networks Resource Allocation: Evolution from Optimization, Game Theory, to Economics

    Get PDF
    In order to deal with the Quality of Experience (QoE) improvement issue in the wireless networks services. In this dissertation we first investigated the Device to Device (D2D) relaying approach in the conventional Base Station (BS) to User Equipment (UE) two entities multimedia service system. In this part, the Multiple Input Multiple Output (MIMO) technology will be implemented in the D2D communication. Furthermore, factors such as the multimedia content distribution (i.e., Quad-tree fractal image compression method), the power allocation strategy, and modulation size are jointly considered to improve the QoE performance and energy efficiency. In addition, the emerging Non-Orthogonal Multiple Access (NOMA) transmission method is becoming very popular and being considered as one of the most potential technologies for the next generation of wireless networks. For the purpose of improving the QoE of UE in the wireless multimedia service, the power allocation method and the corresponding limitations are studied in detail in the wireless system where the traditional Orthogonal Multiple Access (OMA) technology and the promising NOMA technology are compared. At last, facing the real business model in the wireless network services, where the Content Provider (CP), Wireless Carrier (WC), and UE are included, we extend on work from the conventional BS-UE two entities research model to the CP-WC-UE three entities model. More specifically, a generalized best response Smart Media Pricing (SMP) method is studied in this dissertation. In our work, the CP and WC are treated as the service provider alliance. The SMP approach and the game theory are utilized to determine the data length of UE and the data price rate determined by the CP-WC union. It is worth pointing out that the concavity of utility function is no longer necessary for seeking the game equilibrium under the proposed best response game solution. Numerical simulation results also validate the system performance improvement of our proposed transmission schemes

    Energy Efficiency and Coverage Trade-Off in 5G for Eco-Friendly and Sustainable Cellular Networks

    Get PDF
    Recently, cellular networks’ energy efficiency has garnered research interest from academia and industry because of its considerable economic and ecological effects in the near future. This study proposes an approach to cooperation between the Long-Term Evolution (LTE) and next-generation wireless networks. The fifth-generation (5G) wireless network aims to negotiate a trade-off between wireless network performance (sustaining the demand for high speed packet rates during busy traffic periods) and energy efficiency (EE) by alternating 5G base stations’ (BSs) switching off/on based on the traffic instantaneous load condition and, at the same time, guaranteeing network coverage for mobile subscribers by the remaining active LTE BSs. The particle swarm optimization (PSO) algorithm was used to determine the optimum criteria of the active LTE BSs (transmission power, total antenna gain, spectrum/channel bandwidth, and signal-to-interference-noise ratio) that achieves maximum coverage for the entire area during the switch-off session of 5G BSs. Simulation results indicate that the energy savings can reach 3.52 kW per day, with a maximum data rate of up to 22.4 Gbps at peak traffic hours and 80.64 Mbps during a 5G BS switched-off session along with guaranteed full coverage over the entire region by the remaining active LTE BSs

    Towards Massive Connectivity Support for Scalable mMTC Communications in 5G networks

    Get PDF
    The fifth generation of cellular communication systems is foreseen to enable a multitude of new applications and use cases with very different requirements. A new 5G multiservice air interface needs to enhance broadband performance as well as provide new levels of reliability, latency and supported number of users. In this paper we focus on the massive Machine Type Communications (mMTC) service within a multi-service air interface. Specifically, we present an overview of different physical and medium access techniques to address the problem of a massive number of access attempts in mMTC and discuss the protocol performance of these solutions in a common evaluation framework

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    セルラ分散MU-MIMO通信システムの干渉制御

    Get PDF
    Tohoku University博士(工学)thesi

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Capacity and scale-free dynamics of evolving wireless networks

    Get PDF
    Many large-scale random graphs (e.g., the Internet) exhibit complex topology, nonhomogeneous spatial node distribution, and preferential attachment of new nodes. Current topology models for ad-hoc networks mostly consider a uniform spatial distribution of nodes and do not capture the dynamics of evolving, real-world graphs, in which nodes "gravitate" toward popular locations and self-organize into non-uniform clusters. In this thesis, we first investigate two constraints on scalability of ad-hoc networks network reliability and node capacity. Unlike other studies, we analyze network resilience to node and link failure with an emphasis on the growth (i.e., evolution) dynamics of the entire system. Along the way, we also study important graph-theoretic properties of ad-hoc networks (including the clustering coefficient and the expected path length) and strengthen our generic understanding of these systems. Finally, recognizing that under existing uniform models future ad-hoc networks cannot scale beyond trivial sizes, we argue that ad-hoc networks should be modeled from an evolution standpoint, which takes into account the well-known "clustering" phenomena observed in all real-world graphs. This model is likely to describe how future ad-hoc networks will self-organize since it is well documented that information content distribution among end-users (as well as among spatial locations) is non-uniform (often heavy-tailed). Results show that node capacity in the proposed evolution model scales to larger network sizes than in traditional approaches, which suggest that non-uniformly clustered, self-organizing, very large-scale ad-hoc networks may become feasible in the future
    corecore