69 research outputs found

    IEEE 802.11 기반 Enterprise 무선 LAN을 위한 자원 관리 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2019. 2. 전화숙.IEEE 802.11이 무선 LAN (wireless local area network, WLAN)의 실질적인 표준이 됨에 따라 수 많은 엑세스 포인트(access points, APs)가 배치되었고, 그 결과 WLAN 밀집 환경이 조성되었다. 이러한 환경에서는, 이웃한 AP들에 동일한 채널을 할당하는 문제를 피할 수 없으며, 이는 해당 AP들이 같은 채널을 공유하게 하고 그로 인한 간섭을 야기한다. 간섭으로 인한 성능 저하를 줄이기 위해 채널 할당(channelization) 기법이 중요하다. 또한, 한 조직이 특정 지역에 밀집 배치된 AP들을 관리한다면 특정 사용자를 서비스할 수 있는 AP가 여럿일 수 있다. 이 경우, 사용자 접속(user association, UA) 기법이 준정적(quasi-static) 환경과 차량 환경 모두에서 네트워크 성능에 큰 영향을 미친다. 본 논문에서는 밀집 배치된 WLAN 환경에서 와이파이(WiFi) 성능 향상을 위해 채널 할당 기법을 제안한다. 먼저, 제안한 기법에서는 각각의 AP에 채널을 할당하기 위해 간섭 그래프(interference graph)를 이용하며 채널 결합(channel bonding)을 고려한다. 다음으로, 주어진 채널 결합 결과를 기반으로 해당 AP가 동적 채널 결합을 지원하는지 여부에 따라 주 채널(primary channel)을 결정한다. 한편, 준정적 환경과 차량 환경에서의 UA 문제는 다소 차이가 있다. 따라서 본 논문에서는 각각의 환경에 따라 서로 다른 UA 기법을 설계하였다. 준정적 환경에서의 UA 기법은 멀티캐스트 전송, 다중 사용자 MIMO (multi-user multiple input multiple output), 그리고 AP 수면과 같은 다양한 기술과 함께 AP간의 부하 분산(load balancing)과 에너지 절약을 고려한다. 제안하는 기법에서 UA 문제는 다목적함수 최적화 문제로 정식화하였고 그 해를 구하였다. 차량 환경에서의 UA 기법은 핸드오버(handover, HO) 스케줄 문제로 귀결된다. 본 논문에서는 도로의 지형을 고려하여 사용자가 접속할 AP를 결정하는 HO 스케줄 기법을 제안한다. 사용자는 단지 다음 AP로 연결을 맺을 시기만 결정하면 되기 때문에, 차량 환경에서의 매우 빠르고 효율적인 HO 기법을 구현할 수 있다. 이를 위해, 그래프 모델링 기법(graph modeling technique)을 활용하여 도로를 따라 배치된 AP사이의 관계를 표현한다. 현실적인 시나리오를 위해 직선 구간, 우회 구간, 교차로, 그리고 유턴 구간 등을 포함하는 복잡한 도로 구조를 고려한다. 도로 구조를 고려하여 각 사용자의 이동 경로를 예측하고, 그에 기반하여 각 사용자 별 HO의 목적 AP 집합을 선택한다. 제안하는 HO 스케줄 기법의 설계 목적은 HO 지연 시간의 합을 최소화하고 각 AP에서 해당 채널을 사용하려는 사용자 수를 줄이면서 WiFi 연결 시간을 최대화하는 것이다. 마지막으로, 본 논문에서는 준정적 환경에서 제안한 채널 할당 기법과 UA 기법의 현실성을 증명하기 위한 시험대(testbed)를 구성하였다. 또한, 광범위한 시뮬레이션을 통해 준정적 환경과 차량 환경에서 제안한 기법들과 기존의 기법들의 성능을 비교하였다.As the IEEE 802.11 (WiFi) becomes the defacto global standard for wireless local area network (WLAN), a huge number of WiFi access points (APs) are deployed. This condition leads to a densely deployed WLANs. In such environment, the conflicting channel allocation between the neighboring access points (APs) is unavoidable, which causes the channel sharing and interference between APs. Thus, the channel allocation (channelization) scheme has a critical role to tackle this issue. In addition, when densely-deployed APs covering a certain area are managed by a single organization, there can exist multiple candidate APs for serving a user. In this case, the user association (UA), i.e., the selection of serving AP, holds a key role in the network performance both in quasi-static and vehicular environments. To improve the performance of WiFi in a densely deployed WLANs environment, we propose a channelization scheme. The proposed channelization scheme utilizes the interference graph to assign the channel for each AP and considers channel bonding. Then, given the channel bonding assignment, the primary channel location for each AP is determined by observing whether the AP supports the static or dynamic channel bonding. Meanwhile, the UA problem in the quasi-static and vehicular environments are slightly different. Thus, we devise UA schemes both for quasi-static and vehicular environments. The UA schemes for quasi-static environment takes account the load balancing among APs and energy saving, considering various techniques for performance improvement, such as multicast transmission, multi-user MIMO, and AP sleeping, together. Then, we formulate the problem into a multi-objective optimization and get the solution as the UA scheme. On the other hand, the UA scheme in the vehicular environment is realized through handover (HO) scheduling mechanism. Specifically, we propose a HO scheduling scheme running on a server, which determines the AP to which a user will be handed over, considering the road topology. Since a user only needs to decide when to initiate the connection to the next AP, a very fast and efficient HO in the vehicular environment can be realized. For this purpose, we utilize the graph modeling technique to map the relation between APs within the road. We consider a practical scenario where the structure of the road is complex, which includes straight, curve, intersection, and u-turn area. Then, the set of target APs for HO are selected for each user moving on a particular road based-on its moving path which is predicted considering the road topology. The design objective of the proposed HO scheduling is to maximize the connection time on WiFi while minimizing the total HO latency and reducing the number of users which contend for the channel within an AP. Finally, we develop a WLAN testbed to demonstrate the practicality and feasibility of the proposed channelization and UA scheme in a quasi-static environment. Furthermore, through extensive simulations, we compare the performance of the proposed schemes with the existing schemes both in quasi-static and vehicular environments.1 Introduction 1.1 Background and Motivation 1.2 Related Works 1.3 Research Scope and Proposed Schemes 1.3.1 Centralized Channelization Scheme for Wireless LANs Exploiting Channel Bonding 1.3.2 User Association for Load Balancing and Energy Saving in Enterprise WLAN 1.3.3 A Graph-Based Handover Scheduling for Heterogenous Vehicular Networks 1.4 Organization 2 Centralized Channelization Scheme for Wireless LANs Exploiting Channel Bonding 2.1 System Model 2.2 Channel Sharing and Bonding 2.2.1 Interference between APs 2.2.2 Channel Sharing 2.2.3 Channel Bonding 2.3 Channelization Scheme 2.3.1 Building Interference Graph 2.3.2 Channel Allocation 2.3.3 Primary Channel Selection 2.4 Implementation 3 User Association for Load Balancing and Energy Saving in Enterprise Wireless LANs 3.1 System Model 3.1.1 IEEE 802.11 ESS-based Enterprise WLAN 3.1.2 Downlink Achievable Rate for MU-MIMO Groups 3.1.3 Candidate MU-MIMO Groups 3.2 User Association Problem 3.2.1 Factors of UA Objective 3.2.2 Problem Formulation 3.3 User Association Scheme 3.3.1 Equivalent Linear Problem 3.3.2 Solution Algorithm 3.3.3 Computational Complexity (Execution Time) 3.4 Implementation 4 A Graph-Based Handover Scheduling for Heterogenous Vehicular Networks 4.1 System Model 4.2 Graph-Based Modeling 4.2.1 Division of Road Portion into Road Segments 4.2.2 Relation between PoAs on a Road Segment 4.2.3 Directed Graph Representation 4.3 Handover Scheduling Problem 4.3.1 Problem Formulation 4.3.2 Weight of Edge 4.3.3 HO Scheduling Algorithm 4.4 Handover Scheduling Operation 4.4.1 HO Schedule Delivery 4.4.2 HO Triggering and Execution 4.4.3 Communication Overhead 5 Performance Evaluation 5.1 CentralizedChannelizationSchemeforWirelessLANsExploitingChannel Bonding 5.1.1 Experiment Settings 5.1.2 Comparison Schemes 5.1.3 Preliminary Experiment for Building Interference Graph 5.1.4 Experiment Results 5.2 User Association for Load Balancing and Energy Saving in Enterprise Wireless LANs 5.2.1 Performance Metrics 5.2.2 Experiment Settings 5.2.3 Experiment Results 5.2.4 Simulation Settings 5.2.5 Comparison Schemes 5.2.6 Simulation Results 5.2.7 Simulation for MU-MIMO System 5.3 A Graph-BasedHandover Scheduling for Heterogenous Vehicular Networks 5.3.1 Performance Metrics 5.3.2 Simulation Settings 5.3.3 Simulation Results 6 Conculsion Bibliography AcknowledgementsDocto

    Medium access control protocol design for wireless communications and networks review

    Get PDF
    Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks

    Performance analysis of 4G wireless networks using system level simulator

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaIn the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.FC

    Multilayer optimization in radio resource allocation for the packet transmission in wireless networks

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaNa última década tem-se assistido a um crescimento exponencial das redes de comunicações sem fios, nomeadamente no que se refere a taxa de penetração do serviço prestado e na implementação de novas infra-estruturas em todo o globo. É ponto assente neste momento que esta tendência irá não só continuar como se fortalecer devido à convergência que é esperada entre as redes móveis sem fio e a disponibilização de serviços de banda larga para a rede Internet fixa, numa evolução para um paradigma de uma arquitectura integrada e baseada em serviços e aplicações IP. Por este motivo, as comunicações móveis sem fios irão ter um papel fundamental no desenvolvimento da sociedade de informação a médio e longo prazos. A estratégia seguida no projecto e implementação das redes móveis celulares da actual geração (2G e 3G) foi a da estratificação da sua arquitectura protocolar numa estrutura modular em camadas estanques, onde cada camada do modelo é responsável pela implementação de um conjunto de funcionalidades. Neste modelo a comunicação dá-se apenas entre camadas adjacentes através de primitivas de comunicação pré-estabelecidas. Este modelo de arquitectura resulta numa mais fácil implementação e introdução de novas funcionalidades na rede. Entretanto, o facto das camadas inferiores do modelo protocolar não utilizarem informação disponibilizada pelas camadas superiores, e vice-versa acarreta uma degradação no desempenho do sistema. Este paradigma é particularmente importante quando sistemas de antenas múltiplas são implementados (sistemas MIMO). Sistemas de antenas múltiplas introduzem um grau adicional de liberdade no que respeita a atribuição de recursos rádio: o domínio espacial. Contrariamente a atribuição de recursos no domínio do tempo e da frequência, no domínio espacial os recursos rádio mapeados no domínio espacial não podem ser assumidos como sendo completamente ortogonais, devido a interferência resultante do facto de vários terminais transmitirem no mesmo canal e/ou slots temporais mas em feixes espaciais diferentes. Sendo assim, a disponibilidade de informação relativa ao estado dos recursos rádio às camadas superiores do modelo protocolar é de fundamental importância na satisfação dos critérios de qualidade de serviço exigidos. Uma forma eficiente de gestão dos recursos rádio exige a implementação de algoritmos de agendamento de pacotes de baixo grau de complexidade, que definem os níveis de prioridade no acesso a esses recursos por base dos utilizadores com base na informação disponibilizada quer pelas camadas inferiores quer pelas camadas superiores do modelo. Este novo paradigma de comunicação, designado por cross-layer resulta na maximização da capacidade de transporte de dados por parte do canal rádio móvel, bem como a satisfação dos requisitos de qualidade de serviço derivados a partir da camada de aplicação do modelo. Na sua elaboração, procurou-se que o standard IEEE 802.16e, conhecido por Mobile WiMAX respeitasse as especificações associadas aos sistemas móveis celulares de quarta geração. A arquitectura escalonável, o baixo custo de implementação e as elevadas taxas de transmissão de dados resultam num processo de multiplexagem de dados e valores baixos no atraso decorrente da transmissão de pacotes, os quais são atributos fundamentais para a disponibilização de serviços de banda larga. Da mesma forma a comunicação orientada à comutação de pacotes, inenente na camada de acesso ao meio, é totalmente compatível com as exigências em termos da qualidade de serviço dessas aplicações. Sendo assim, o Mobile WiMAX parece satisfazer os requisitos exigentes das redes móveis de quarta geração. Nesta tese procede-se à investigação, projecto e implementação de algoritmos de encaminhamento de pacotes tendo em vista a eficiente gestão do conjunto de recursos rádio nos domínios do tempo, frequência e espacial das redes móveis celulares, tendo como caso prático as redes móveis celulares suportadas no standard IEEE802.16e. Os algoritmos propostos combinam métricas provenientes da camada física bem como os requisitos de qualidade de serviço das camadas superiores, de acordo com a arquitectura de redes baseadas no paradigma do cross-layer. O desempenho desses algoritmos é analisado a partir de simulações efectuadas por um simulador de sistema, numa plataforma que implementa as camadas física e de acesso ao meio do standard IEEE802.16e.In the last decade mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. It is expected that this tendency will continue to increase with the convergence of fixed Internet wired networks with mobile ones and with the evolution to the full IP architecture paradigm. Therefore mobile wireless communications will be of paramount importance on the development of the information society of the near future. In particular a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation. 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigm). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications to be available in the near future. The approach followed in the design and implementation of the mobile wireless networks of current generation (2G and 3G) has been the stratification of the architecture into a communication protocol model composed by a set of layers, in which each one encompasses some set of functionalities. In such protocol layered model, communications is only allowed between adjacent layers and through specific interface service points. This modular concept eases the implementation of new functionalities as the behaviour of each layer in the protocol stack is not affected by the others. However, the fact that lower layers in the protocol stack model do not utilize information available from upper layers, and vice versa, downgrades the performance achieved. This is particularly relevant if multiple antenna systems, in a MIMO (Multiple Input Multiple Output) configuration, are implemented. MIMO schemes introduce another degree of freedom for radio resource allocation: the space domain. Contrary to the time and frequency domains, radio resources mapped into the spatial domain cannot be assumed as completely orthogonal, due to the amount of interference resulting from users transmitting in the same frequency sub-channel and/or time slots but in different spatial beams. Therefore, the availability of information regarding the state of radio resources, from lower to upper layers, is of fundamental importance in the prosecution of the levels of QoS expected from those multimedia applications. In order to match applications requirements and the constraints of the mobile radio channel, in the last few years researches have proposed a new paradigm for the layered architecture for communications: the cross-layer design framework. In a general way, the cross-layer design paradigm refers to a protocol design in which the dependence between protocol layers is actively exploited, by breaking out the stringent rules which restrict the communication only between adjacent layers in the original reference model, and allowing direct interaction among different layers of the stack. An efficient management of the set of available radio resources demand for the implementation of efficient and low complexity packet schedulers which prioritize user’s transmissions according to inputs provided from lower as well as upper layers in the protocol stack, fully compliant with the cross-layer design paradigm. Specifically, efficiently designed packet schedulers for 4G networks should result in the maximization of the capacity available, through the consideration of the limitations imposed by the mobile radio channel and comply with the set of QoS requirements from the application layer. IEEE 802.16e standard, also named as Mobile WiMAX, seems to comply with the specifications of 4G mobile networks. The scalable architecture, low cost implementation and high data throughput, enable efficient data multiplexing and low data latency, which are attributes essential to enable broadband data services. Also, the connection oriented approach of Its medium access layer is fully compliant with the quality of service demands from such applications. Therefore, Mobile WiMAX seems to be a promising 4G mobile wireless networks candidate. In this thesis it is proposed the investigation, design and implementation of packet scheduling algorithms for the efficient management of the set of available radio resources, in time, frequency and spatial domains of the Mobile WiMAX networks. The proposed algorithms combine input metrics from physical layer and QoS requirements from upper layers, according to the crosslayer design paradigm. Proposed schedulers are evaluated by means of system level simulations, conducted in a system level simulation platform implementing the physical and medium access control layers of the IEEE802.16e standard

    Modeling Multi-User WLANs Under Closed-Loop Traffic

    Get PDF
    corecore