71 research outputs found

    Downlink MIMO-NOMA with and without CSI: A short survey and comparison

    Get PDF
    Non-orthogonal multiple access (NOMA) concatenated with multiple-input multiple-output (MIMO) or with massive MIMO, has been under scrutiny for both broadband and machine-type communications (MTC), even though it has not been adopted in the latest 5G standard (3GPP Release 16), being left for beyond 5G. This paper dwells on the problems causing such cautiousness, and surveys different NOMA proposals for the downlink in cell-centered systems. Because acquiring channel state information at the transmitter (CSIT) may be hard, open-loop operation is an option. However, when users clustering is possible, due to some common statistical CSI, closed-loop operation should be exploited. The paper numerically compares these two operating modes. The users are clustered in beams and then successive interference cancellation (SIC) separates the power-domain NOMA (PD-NOMA) signals at the terminals. In the precoded closed-loop system, the Karhunen-Loève channel decomposition is used assuming that users within a cluster share the same slowly changing spatial correlation matrix. For a comparable number of antennas the two options perform similarly, however, while in the open-loop downlink the number of antennas at the BS is limited in practice, this restriction is waived in the precoded systems, with massive MIMO allowing for a larger number of clusters.info:eu-repo/semantics/acceptedVersio

    On the Performance Gain of NOMA over OMA in Uplink Communication Systems

    Full text link
    In this paper, we investigate and reveal the ergodic sum-rate gain (ESG) of non-orthogonal multiple access (NOMA) over orthogonal multiple access (OMA) in uplink cellular communication systems. A base station equipped with a single-antenna, with multiple antennas, and with massive antenna arrays is considered both in single-cell and multi-cell deployments. In particular, in single-antenna systems, we identify two types of gains brought about by NOMA: 1) a large-scale near-far gain arising from the distance discrepancy between the base station and users; 2) a small-scale fading gain originating from the multipath channel fading. Furthermore, we reveal that the large-scale near-far gain increases with the normalized cell size, while the small-scale fading gain is a constant, given by γ\gamma = 0.57721 nat/s/Hz, in Rayleigh fading channels. When extending single-antenna NOMA to MM-antenna NOMA, we prove that both the large-scale near-far gain and small-scale fading gain achieved by single-antenna NOMA can be increased by a factor of MM for a large number of users. Moreover, given a massive antenna array at the base station and considering a fixed ratio between the number of antennas, MM, and the number of users, KK, the ESG of NOMA over OMA increases linearly with both MM and KK. We then further extend the analysis to a multi-cell scenario. Compared to the single-cell case, the ESG in multi-cell systems degrades as NOMA faces more severe inter-cell interference due to the non-orthogonal transmissions. Besides, we unveil that a large cell size is always beneficial to the ergodic sum-rate performance of NOMA in both single-cell and multi-cell systems. Numerical results verify the accuracy of the analytical results derived and confirm the insights revealed about the ESG of NOMA over OMA in different scenarios.Comment: 51 pages, 7 figures, invited paper, submitted to IEEE Transactions on Communication

    Integer-Forcing Linear Receivers

    Get PDF
    Linear receivers are often used to reduce the implementation complexity of multiple-antenna systems. In a traditional linear receiver architecture, the receive antennas are used to separate out the codewords sent by each transmit antenna, which can then be decoded individually. Although easy to implement, this approach can be highly suboptimal when the channel matrix is near singular. This paper develops a new linear receiver architecture that uses the receive antennas to create an effective channel matrix with integer-valued entries. Rather than attempting to recover transmitted codewords directly, the decoder recovers integer combinations of the codewords according to the entries of the effective channel matrix. The codewords are all generated using the same linear code which guarantees that these integer combinations are themselves codewords. Provided that the effective channel is full rank, these integer combinations can then be digitally solved for the original codewords. This paper focuses on the special case where there is no coding across transmit antennas and no channel state information at the transmitter(s), which corresponds either to a multi-user uplink scenario or to single-user V-BLAST encoding. In this setting, the proposed integer-forcing linear receiver significantly outperforms conventional linear architectures such as the zero-forcing and linear MMSE receiver. In the high SNR regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff for the standard MIMO channel with no coding across transmit antennas. It is further shown that in an extended MIMO model with interference, the integer-forcing linear receiver achieves the optimal generalized degrees-of-freedom.Comment: 40 pages, 16 figures, to appear in the IEEE Transactions on Information Theor

    Privacy preservation via beamforming for NOMA

    Get PDF
    Non-orthogonal multiple access (NOMA) has been proposed as a promising multiple access approach for 5G mobile systems because of its superior spectrum efficiency. However, the privacy between the NOMA users may be compromised due to the transmission of a superposition of all users’ signals to successive interference cancellation (SIC) receivers. In this paper, we propose two schemes based on beamforming optimization for NOMA that can enhance the security of a specific private user while guaranteeing the other users’ quality of service (QoS). Specifically, in the first scheme, when the transmit antennas are inadequate, we intend to maximize the secrecy rate of the private user, under the constraint that the other users’ QoS is satisfied. In the second scheme, the private user’s signal is zero-forced at the other users when redundant antennas are available. In this case, the transmission rate of the private user is also maximized while satisfying the QoS of the other users. Due to the nonconvexity of optimization in these two schemes, we first convert them into convex forms and then, an iterative algorithm based on the ConCave-Convex Procedure is proposed to obtain their solutions. Extensive simulation results are presented to evaluate the effectiveness of the proposed scheme
    corecore