5,725 research outputs found

    Interference Cancellation trough Interference Alignment for Downlink of Cognitive Cellular Networks

    Full text link
    In this letter, we propose the interference cancellation through interference alignment at the downlink of cognitive cellular networks. Interference alignment helps the spatial resources to be shared among primary and secondary cells and thus, it can provide higher degrees of freedom through interference cancellation. We derive and depict the achievable degrees of freedom. We also analyse and calculate the achievable sum rates applying water-filling optimal power allocation

    Demo: Non-classic Interference Alignment for Downlink Cellular Networks

    Get PDF
    Our demo aims at proving the concept of a recent proposed interference management scheme that reduces the inter-cell interference in downlink without complex coordination, known as non-classic interference alignment (IA) scheme. We assume a case where one main Base Station (BS) needs to serve three users equipments (UE) while another BS is causing interference. The primary goal is to construct the alignment scheme ; i.e. each UE estimates the main and interfered channel coefficients, calculates the optimal interference free directions dropped by the interfering BS and feeds them back to the main BS which in turn applies a scheduling to select the best free inter-cell interference directions. Once the scheme is build, we are able to measure the total capacity of the downlink interference channel. We run the scheme in CorteXlab ; a controlled hardware facility located in Lyon, France with remotely programmable radios and multi-node processing capabilities, and we illustrate the achievable capacity gain for different channel realizations.Comment: Joint NEWCOM/COST Workshop on Wireless Communications JNCW 2015, Oct 2015, Barcelone, Spain. 201

    Degrees of Freedom of Uplink-Downlink Multiantenna Cellular Networks

    Full text link
    An uplink-downlink two-cell cellular network is studied in which the first base station (BS) with M1M_1 antennas receives independent messages from its N1N_1 serving users, while the second BS with M2M_2 antennas transmits independent messages to its N2N_2 serving users. That is, the first and second cells operate as uplink and downlink, respectively. Each user is assumed to have a single antenna. Under this uplink-downlink setting, the sum degrees of freedom (DoF) is completely characterized as the minimum of (N1N2+min⁡(M1,N1)(N1−N2)++min⁡(M2,N2)(N2−N1)+)/max⁡(N1,N2)(N_1N_2+\min(M_1,N_1)(N_1-N_2)^++\min(M_2,N_2)(N_2-N_1)^+)/\max(N_1,N_2), M1+N2,M2+N1M_1+N_2,M_2+N_1, max⁡(M1,M2)\max(M_1,M_2), and max⁡(N1,N2)\max(N_1,N_2), where a+a^+ denotes max⁡(0,a)\max(0,a). The result demonstrates that, for a broad class of network configurations, operating one of the two cells as uplink and the other cell as downlink can strictly improve the sum DoF compared to the conventional uplink or downlink operation, in which both cells operate as either uplink or downlink. The DoF gain from such uplink-downlink operation is further shown to be achievable for heterogeneous cellular networks having hotspots and with delayed channel state information.Comment: 22 pages, 11 figures, in revision for IEEE Transactions on Information Theor

    Downlink Cellular Interference Alignment

    Get PDF
    Cellular networks have been notoriously interference-limited systems in dense urban areas, where base stations are deployed in close proximity to one-another. Recently, a signal processing method called Interference Alignment has emerged, making use of the increasing signal dimensions available in the system through multiple-input multiple output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) technologies. In this report, we review the state of the art of interference alignment since its foundation, and we detail algorithms and baseline comparisons to make when applying interference alignment schemes to downlink cellular networks. We also propose a number of research directions of interest which are not yet answered in the current literature.Les rĂ©seaux cellulaires ont Ă©tĂ© l'exemple typique de rĂ©seaux dont les performances sont limitĂ©s par les interfĂ©rences, particuliĂšrement dans les rĂ©gions urbaines. RĂ©cemment, une nouvelle technique de traitement du signal appelĂ©e "alignement d'interfĂ©rences" a Ă©tĂ© dĂ©velopĂ©e, et permet d'utiliser les dimensions du signal reçu Ă  travers les technologies MIMO (multiple input multiple output) et OFDM (orthogonal frequency division multiplexing) pour annuler tout ou partie de l'interfĂ©rence reçue par les mobiles. Dans ce rapport, nous Ă©valuons la littĂ©rature liĂ©e Ă  l'alignement d'interfĂ©rence et nous dĂ©taillons les algorithmes existants et leur application aux rĂ©seaux cellulaires en voie descendante. Nous proposons ensuite un ensemble de directions de recherche d'intĂ©rĂȘt par rapport Ă  l'Ă©tat de l'art actuel

    Exploiting Spatial Interference Alignment and Opportunistic Scheduling in the Downlink of Interference Limited Systems

    Full text link
    In this paper we analyze the performance of single stream and multi-stream spatial multiplexing (SM) systems employing opportunistic scheduling in the presence of interference. In the proposed downlink framework, every active user reports the post-processing signal-to-interference-plus-noise-power-ratio (post-SINR) or the receiver specific mutual information (MI) to its own transmitter using a feedback channel. The combination of scheduling and multi-antenna receiver processing leads to substantial interference suppression gain. Specifically, we show that opportunistic scheduling exploits spatial interference alignment (SIA) property inherent to a multi-user system for effective interference mitigation. We obtain bounds for the outage probability and the sum outage capacity for single stream and multi stream SM employing real or complex encoding for a symmetric interference channel model. The techniques considered in this paper are optimal in different operating regimes. We show that the sum outage capacity can be maximized by reducing the SM rate to a value less than the maximum allowed value. The optimum SM rate depends on the number of interferers and the number of available active users. In particular, we show that the generalized multi-user SM (MU SM) method employing real-valued encoding provides a performance that is either comparable, or significantly higher than that of MU SM employing complex encoding. A combination of analysis and simulation is used to describe the trade-off between the multiplexing rate and sum outage capacity for different antenna configurations
    • 

    corecore