579 research outputs found

    Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming

    Get PDF
    Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria

    Downlink beamforming in underlay cognitive cellular networks

    Get PDF
    We propose a novel scheme for downlink beamforming design in an underlay cognitive cellular system. The beamforming design is formulated as an optimization problem with the objective of keeping the cognitive base station transmit power as well as the induced interference on the primary users, below predefined system thresholds. This is subject to providing a certain level of signal-to-interference-plus-noise ratio (SINR) to the secondary users. We then derive the corresponding semidefinite programming form for the formulated optimization problem and propose an iterative algorithm to obtain the beamforming vectors as the optimal solutions. We further analytically show the convergence of the proposed iterative algorithm. Extensive simulations verify that the proposed algorithm quickly converges to the optimal solution. We then compare the proposed scheme with a benchmarking system defined based on the previous methods proposed in the related literature. Comparisons show that the proposed algorithm outperforms the benchmarking system and induces lower interference at the primary service receivers. It is also observed that the proposed algorithm offers a higher sum rate in comparison to the benchmarking system. Simulation results further reveal that the proposed approach effectively works at a relatively high SINR level required by secondary users and strict interference threshold set by the primary system while the benchmarking system fails to do so

    Generic Multiuser Coordinated Beamforming for Underlay Spectrum Sharing

    Full text link
    The beamforming techniques have been recently studied as possible enablers for underlay spectrum sharing. The existing beamforming techniques have several common limitations: they are usually system model specific, cannot operate with arbitrary number of transmit/receive antennas, and cannot serve arbitrary number of users. Moreover, the beamforming techniques for underlay spectrum sharing do not consider the interference originating from the incumbent primary system. This work extends the common underlay sharing model by incorporating the interference originating from the incumbent system into generic combined beamforming design that can be applied on interference, broadcast or multiple access channels. The paper proposes two novel multiuser beamforming algorithms for user fairness and sum rate maximization, utilizing newly derived convex optimization problems for transmit and receive beamformers calculation in a recursive optimization. Both beamforming algorithms provide efficient operation for the interference, broadcast and multiple access channels, as well as for arbitrary number of antennas and secondary users in the system. Furthermore, the paper proposes a successive transmit/receive optimization approach that reduces the computational complexity of the proposed recursive algorithms. The results show that the proposed complexity reduction significantly improves the convergence rates and can facilitate their operation in scenarios which require agile beamformers computation.Comment: 30 pages, 5 figure

    Joint Channel Estimation and Pilot Allocation in Underlay Cognitive MISO Networks

    Get PDF
    Cognitive radios have been proposed as agile technologies to boost the spectrum utilization. This paper tackles the problem of channel estimation and its impact on downlink transmissions in an underlay cognitive radio scenario. We consider primary and cognitive base stations, each equipped with multiple antennas and serving multiple users. Primary networks often suffer from the cognitive interference, which can be mitigated by deploying beamforming at the cognitive systems to spatially direct the transmissions away from the primary receivers. The accuracy of the estimated channel state information (CSI) plays an important role in designing accurate beamformers that can regulate the amount of interference. However, channel estimate is affected by interference. Therefore, we propose different channel estimation and pilot allocation techniques to deal with the channel estimation at the cognitive systems, and to reduce the impact of contamination at the primary and cognitive systems. In an effort to tackle the contamination problem in primary and cognitive systems, we exploit the information embedded in the covariance matrices to successfully separate the channel estimate from other users' channels in correlated cognitive single input multiple input (SIMO) channels. A minimum mean square error (MMSE) framework is proposed by utilizing the second order statistics to separate the overlapping spatial paths that create the interference. We validate our algorithms by simulation and compare them to the state of the art techniques.Comment: 6 pages, 2 figures, invited paper to IWCMC 201

    Transmit Precoding for Interference Exploitation in the Underlay Cognitive Radio Z-channel

    Get PDF
    This paper introduces novel transmit beamforming approaches for the cognitive radio (CR) Z-channel. The proposed transmission schemes exploit non-causal information about the interference at the SBS to re-design the CR beamforming optimization problem. This is done with the objective to improve the quality of service (QoS) of secondary users by taking advantage of constructive interference in the secondary link. The beamformers are designed to minimize the worst secondary user's symbol error probability (SEP) under constraints on the instantaneous total transmit power, and the power of the instantaneous interference in the primary link. The problem is formulated as a bivariate probabilistic constrained programming (BPCP) problem. We show that the BPCP problem can be transformed for practical SEPs into a convex optimization problem that can be solved, e.g., by the barrier method. A computationally efficient tight approximate approach is also developed to compute the near-optimal solutions. Simulation results and analysis show that the average computational complexity per downlink frame of the proposed approximate problem is comparable to that of the conventional CR downlink beamforming problem. In addition, both the proposed methods offer significant performance improvements as compared to the conventional CR downlink beamforming, while guaranteeing the QoS of primary users on an instantaneous basis, in contrast to the average QoS guarantees of conventional beamformers
    • …
    corecore