51 research outputs found

    Rotary-linear axes for high speed machining

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (p. 353-358).This thesis presents the design, analysis, fabrication, and control of a rotary-linear axis; this axis is a key subsystem for high speed, 5-axis machine tools intended for fabricating centimeter-scale parts. The rotary-linear axis is a cylinder driven independently in rotation and translation. This hybridization minimizes machine inertias and thereby maximizes accelerations allowing for the production of parts with complex surfaces rapidly and accurately. Such parts might include dental restorations, molds, dies, and turbine blades. The hybrid rotary and linear motion provides special challenges for precision actuation and sensing. Our prototype rotary-linear axis consists of a central shaft, 3/4 inch (1.91 cm) in diameter and 15 inches (38.10 cm) long, supported by two cylindrical air bearings. The axis has one inch (2.54 cm) of linear travel and unlimited rotary travel. Two frameless permanent magnet motors respectively provide up to 41 N continuous force and 0.45 N-m continuous torque. The rotary motor is composed of commercially available parts; the tubular linear motor is completely custom-built. The prototype axis achieves a linear acceleration of 3 g's and a rotary acceleration of 1,300 rad/s2. With higher power current amplifiers and reduced sensor inertia, we predict the axis could attain peak accelerations of 12 g's and 17,500 rad/s2 at low duty cycles. This thesis also examines several concepts for developing a precision rotary-linear sensor that can tolerate axial translation.Our prototype rotary sensor uses two laser interferometers to measure the orientation of a slightly tilted mirror attached to the shaft. A third interferometer measures shaft translation. The rotary axis has a control bandwidth of 40 Hz; the linear axis has a bandwidth of 70 Hz. The rotary-linear axis has 2.5 nm rms linear positioning noise and 3.1 prad rms rotary positioning noise. This thesis presents one novel 5-axis machine topology which uses two rotary-linear axes. The first axis rotates and translates the part. The second axis carries the cutting tool and provides high speed spindle rotation as well as infeed along the axis of rotation. For use as a spindle, precision rotary sensing is not required, and a sensorless control scheme based on motor currents and voltages can be used.by Michael Kevin Leibman.Ph.D

    Design and Analysis of Electric Powertrains for Offshore Drilling Applications

    Get PDF
    Doktorgradsavhandling ved Institutt for ingeniørvitenskap, Universitetet i Agder, 2016The global energy market is challenged with an ever increasing need for resources to meet the growing demands for electric power, transportation fuels, etc. Although we witness the expansion of the renewable energy industry, it is still the fossil fuels, with oil and gas dominating the scene of global energy supply sector, that provide majority of worldwide power generation.However, many of the easily accessible hydrocarbon reserves are depleted which requires from the producers of drilling equipment to focus on cost-effective operations and technology to compete in a challenging market. Particularly high level of activity is observed in both industry and academia in the field of electrical actuation systems of drilling machines, as control methods of alternating current (AC) motor drives have become an industrially mature technology over the past few decades. In addition, state-of-the-art AC motors manufacturing processes allow to conform to the strict requirements for safe operation of electrical equipment in explosive atmospheres. These two main reasons made electric actuation systems a tough competitor to hydraulic powertrains used traditionally by the industry. However, optimal design of induction motor drives and systematic analysis of factors associated with operation in harsh offshore conditions are still considered as a major challenge. In this thesis, effective methods for design and analysis of induction motor drives are proposed, including aspects of optimization and simulation-based engineering. The first part of the thesis is devoted to studying methods for modeling, control, and identification of induction machines operating in offshore drilling equipment with the focus to improve their reliability, extend lifetime, and avoid faults and damage, whereas the second part introduces more general approaches to the optimal selection of components of electric drivetrains and to the improvement of the existing dimensioning guidelines. A multidisciplinary approach to design of actuation systems is explored in this thesis by studying the areas of motion control, condition monitoring, and thermal modeling of electric powertrains with an aspiration to reach the level of design sophistication which goes beyond what is currently considered an industrial standard. We present a technique to reproduce operation of a full-scale offshore drilling machine on a scaled-down experimental setup to estimate the mechanical load that the designed powertrain must overcome to meet the specification requirements. The same laboratory setup is used to verify the accuracy of the estimation and control method of an induction motor drive based on the extended Kalman filter (EKF) to confirm that the sensorless control techniques can reduce the number of data acquisition devices in offshore machines, and thus decrease their failure rate without negatively affecting their functionality. To address the challenge of condition monitoring of induction motor drives, we propose a technique to assess the expected lifetime of electric drivetrain components when subjected to the desired duty cycles by comparing the effects of a few popular motion control signals on the cumulative damage and vibrations. As a result, the information about the influence of a given control strategy on drivetrain lifecycle is made available early in the design stage which can significantly affect the choice of the optimal powertrain components. The results show that some of the techniques that have a well-proven track record in other industries can be successfully applied to solve challenges associated with operation of offshore drilling machines. One of the most essential contributions of this thesis, optimal selection of drivetrain components, is based on formulating the drivetrain dimensioning problem as a mixed integer optimization program. The components of powertrain that satisfy the design constraints and are as cost-effective as possible are found to be the global optimum, contrary to the functionality offered by some commercially available drivetrain sizing software products. Another important drawback of the dimensioning procedures recommended by the motor drives manufacturers is the inability to assess if the permissible temperature limits given in the standards do not become violated when the actuation system experiences overloads different than these tabulated in the catalogs. Hence, the second most significant contribution is to propose a method to monitor thermal performance of induction motor drives that is based exclusively on publicly available catalog data and allows for evaluating whether the standard thermal performance limits are violated or not under arbitrary load conditions and at any ambient temperature. Both these solutions can effectively enrich the industrially accepted dimensioning procedures to satisfy the level of conservatism that is demanded by the offshore drilling business but, at the same time, provide improved efficiency and flexibility of the product design process and guarantee optimality (quantitatively, not qualitatively, measurable) of the final solution. An attractive direction for additional development is to further integrate knowledge from different fields relevant to electric powertrains to enable design of tailored solutions without compromising on their cost and performance

    International Workshop on MicroFactories (IWMF 2012): 17th-20th June 2012 Tampere Hall Tampere, Finland

    Get PDF
    This Workshop provides a forum for researchers and practitioners in industry working on the diverse issues of micro and desktop factories, as well as technologies and processes applicable for micro and desktop factories. Micro and desktop factories decrease the need of factory floor space, and reduce energy consumption and improve material and resource utilization thus strongly supporting the new sustainable manufacturing paradigm. They can be seen also as a proper solution to point-of-need manufacturing of customized and personalized products near the point of need

    Proceedings of the 40th Aerospace Mechanisms Symposium

    Get PDF
    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 40th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 40th AMS, hosted by the Kennedy Space Center (KSC) in Cocoa Beach, Florida, was held May 12, 13 and 14, 2010. During these three days, 38 papers were presented. Topics included gimbals and positioning mechanisms, CubeSats, actuators, Mars rovers, and Space Station mechanisms. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administratio

    41st Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    NASA Tech Briefs, Summer 1985

    Get PDF
    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    NASA patent abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 18)

    Get PDF
    Entries for 3900 patents and patent applications citations for the period May 1980 through December 1980 are listed. Indexes for subject, invention, source, number, and accession number are included
    corecore