21,171 research outputs found

    Doubly geometric processes and applications

    Get PDF
    The geometric process has attracted extensive research attention from authors in reliability mathematics since its introduction. However, it possesses some limitations, which include that: (1) it can merely model stochastically increasing or decreasing inter-arrival times of recurrent event processes, and (2) it cannot model recurrent event processes where the inter-arrival time distributions have varying shape parameters. Those limitations may prevent it from a wider application in the real world. In this paper, we extend the geometric process to a new process, the doubly geometric process, which overcomes the above two limitations. Probability properties are derived and two methods of parameter estimation are given. Application of the proposed model is presented: one is on fitting warranty claim data and the other is to compare the performance of the doubly geometric process with the performance of other widely used models in fitting real world datasets, based on the corrected Akaike information criterion

    Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams

    Get PDF
    The effect of surface stress on the stiffness of cantilever beams remains an outstanding problem in the physical sciences. While numerous experimental studies report significant stiffness change due to surface stress, theoretical predictions are unable to rigorously and quantitatively reconcile these observations. In this Letter, we present the first controlled measurements of stress-induced change in cantilever stiffness with commensurate theoretical quantification. Simultaneous measurements are also performed on equivalent clamped-clamped beams. All experimental results are quantitatively and accurately predicted using elasticity theory. We also present conclusive experimental evidence for invalidity of the longstanding and unphysical axial force model, which has been widely applied to interpret measurements using cantilever beams. Our findings will be of value in the development of micro- and nanoscale resonant mechanical sensors

    Monocrystalline silicon carbide nanoelectromechanical systems

    Get PDF
    SiC is an extremely promising material for nanoelectromechanical systems given its large Young's modulus and robust surface properties. We have patterned nanometer scale electromechanical resonators from single-crystal 3C-SiC layers grown epitaxially upon Si substrates. A surface nanomachining process is described that involves electron beam lithography followed by dry anisotropic and selective electron cyclotron resonance plasma etching steps. Measurements on a representative family of the resulting devices demonstrate that, for a given geometry, nanometer-scale SiC resonators are capable of yielding substantially higher frequencies than GaAs and Si resonators

    First passage problems for upwards skip-free random walks via the Φ,W,Z\Phi,W,Z paradigm

    Get PDF
    We develop the theory of the WW and ZZ scale functions for right-continuous (upwards skip-free) discrete-time discrete-space random walks, along the lines of the analogue theory for spectrally negative L\'evy processes. Notably, we introduce for the first time in this context the one and two-parameter scale functions ZZ, which appear for example in the joint problem of deficit at ruin and time of ruin, and in problems concerning the walk reflected at an upper barrier. Comparisons are made between the various theories of scale functions as one makes time and/or space continuous. The theory is shown to be fruitful by providing a convenient unified framework for studying dividends-capital injection problems under various objectives, for the so-called compound binomial risk model of actuarial science.Comment: 27 page

    Nanoelectromechanical systems

    Get PDF
    Nanoelectromechanical systems (NEMS) are drawing interest from both technical and scientific communities. These are electromechanical systems, much like microelectromechanical systems, mostly operated in their resonant modes with dimensions in the deep submicron. In this size regime, they come with extremely high fundamental resonance frequencies, diminished active masses,and tolerable force constants; the quality (Q) factors of resonance are in the range Q~10^3–10^5—significantly higher than those of electrical resonant circuits. These attributes collectively make NEMS suitable for a multitude of technological applications such as ultrafast sensors, actuators, and signal processing components. Experimentally, NEMS are expected to open up investigations of phonon mediated mechanical processes and of the quantum behavior of mesoscopic mechanical systems. However, there still exist fundamental and technological challenges to NEMS optimization. In this review we shall provide a balanced introduction to NEMS by discussing the prospects and challenges in this rapidly developing field and outline an exciting emerging application, nanoelectromechanical mass detection

    Topological structures of adiabatic phase for multi-level quantum systems

    Full text link
    The topological properties of adiabatic gauge fields for multi-level (three-level in particular) quantum systems are studied in detail. Similar to the result that the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system or angular momentum systems, etc) have a monopole structure, the curvature two-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-level quantum systems are shown to have monopole-like (for all levels) or instanton-like (for the degenerate levels) structures.Comment: 15 pages, no figures. Accepted by J.Phys.
    corecore