3,263 research outputs found

    Network of Time-Multiplexed Optical Parametric Oscillators as a Coherent Ising Machine

    Get PDF
    Finding the ground states of the Ising Hamiltonian [1] maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence, and social network. So far no efficient classical and quantum algorithm is known for these problems, and intensive research is focused on creating physical systems - Ising machines - capable of finding the absolute or approximate ground states of the Ising Hamiltonian [2-6]. Here we report a novel Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections [7]. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programed the smallest non-deterministic polynomial time (NP)- hard Ising problem on the machine, and in 1000 runs of the machine no computational error was detected

    Consensus and Products of Random Stochastic Matrices: Exact Rate for Convergence in Probability

    Full text link
    Distributed consensus and other linear systems with system stochastic matrices WkW_k emerge in various settings, like opinion formation in social networks, rendezvous of robots, and distributed inference in sensor networks. The matrices WkW_k are often random, due to, e.g., random packet dropouts in wireless sensor networks. Key in analyzing the performance of such systems is studying convergence of matrix products WkWk1...W1W_kW_{k-1}... W_1. In this paper, we find the exact exponential rate II for the convergence in probability of the product of such matrices when time kk grows large, under the assumption that the WkW_k's are symmetric and independent identically distributed in time. Further, for commonly used random models like with gossip and link failure, we show that the rate II is found by solving a min-cut problem and, hence, easily computable. Finally, we apply our results to optimally allocate the sensors' transmission power in consensus+innovations distributed detection

    Randomized Consensus with Attractive and Repulsive Links

    Full text link
    We study convergence properties of a randomized consensus algorithm over a graph with both attractive and repulsive links. At each time instant, a node is randomly selected to interact with a random neighbor. Depending on if the link between the two nodes belongs to a given subgraph of attractive or repulsive links, the node update follows a standard attractive weighted average or a repulsive weighted average, respectively. The repulsive update has the opposite sign of the standard consensus update. In this way, it counteracts the consensus formation and can be seen as a model of link faults or malicious attacks in a communication network, or the impact of trust and antagonism in a social network. Various probabilistic convergence and divergence conditions are established. A threshold condition for the strength of the repulsive action is given for convergence in expectation: when the repulsive weight crosses this threshold value, the algorithm transits from convergence to divergence. An explicit value of the threshold is derived for classes of attractive and repulsive graphs. The results show that a single repulsive link can sometimes drastically change the behavior of the consensus algorithm. They also explicitly show how the robustness of the consensus algorithm depends on the size and other properties of the graphs

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina
    corecore