20 research outputs found

    REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE, SYSTEM-ON-CHIP (SOC) PLATFORMS

    Get PDF
    New radar applications need to perform complex algorithms and process a large quantity of data to generate useful information for the users. This situation has motivated the search for better processing solutions that include low-power high-performance processors, efficient algorithms, and high-speed interfaces. In this work, hardware implementation of adaptive pulse compression algorithms for real-time transceiver optimization is presented, and is based on a System-on-Chip architecture for reconfigurable hardware devices. This study also evaluates the performance of dedicated coprocessors as hardware accelerator units to speed up and improve the computation of computing-intensive tasks such matrix multiplication and matrix inversion, which are essential units to solve the covariance matrix. The tradeoffs between latency and hardware utilization are also presented. Moreover, the system architecture takes advantage of the embedded processor, which is interconnected with the logic resources through high-performance buses, to perform floating-point operations, control the processing blocks, and communicate with an external PC through a customized software interface. The overall system functionality is demonstrated and tested for real-time operations using a Ku-band testbed together with a low-cost channel emulator for different types of waveforms

    Dynamic reconfiguration frameworks for high-performance reliable real-time reconfigurable computing

    Get PDF
    The sheer hardware-based computational performance and programming flexibility offered by reconfigurable hardware like Field-Programmable Gate Arrays (FPGAs) make them attractive for computing in applications that require high performance, availability, reliability, real-time processing, and high efficiency. Fueled by fabrication process scaling, modern reconfigurable devices come with ever greater quantities of on-chip resources, allowing a more complex variety of applications to be developed. Thus, the trend is that technology giants like Microsoft, Amazon, and Baidu now embrace reconfigurable computing devices likes FPGAs to meet their critical computing needs. In addition, the capability to autonomously reprogramme these devices in the field is being exploited for reliability in application domains like aerospace, defence, military, and nuclear power stations. In such applications, real-time computing is important and is often a necessity for reliability. As such, applications and algorithms resident on these devices must be implemented with sufficient considerations for real-time processing and reliability. Often, to manage a reconfigurable hardware device as a computing platform for a multiplicity of homogenous and heterogeneous tasks, reconfigurable operating systems (ROSes) have been proposed to give a software look to hardware-based computation. The key requirements of a ROS include partitioning, task scheduling and allocation, task configuration or loading, and inter-task communication and synchronization. Existing ROSes have met these requirements to varied extents. However, they are limited in reliability, especially regarding the flexibility of placing the hardware circuits of tasks on device’s chip area, the problem arising more from the partitioning approaches used. Indeed, this problem is deeply rooted in the static nature of the on-chip inter-communication among tasks, hampering the flexibility of runtime task relocation for reliability. This thesis proposes the enabling frameworks for reliable, available, real-time, efficient, secure, and high-performance reconfigurable computing by providing techniques and mechanisms for reliable runtime reconfiguration, and dynamic inter-circuit communication and synchronization for circuits on reconfigurable hardware. This work provides task configuration infrastructures for reliable reconfigurable computing. Key features, especially reliability-enabling functionalities, which have been given little or no attention in state-of-the-art are implemented. These features include internal register read and write for device diagnosis; configuration operation abort mechanism, and tightly integrated selective-area scanning, which aims to optimize access to the device’s reconfiguration port for both task loading and error mitigation. In addition, this thesis proposes a novel reliability-aware inter-task communication framework that exploits the availability of dedicated clocking infrastructures in a typical FPGA to provide inter-task communication and synchronization. The clock buffers and networks of an FPGA use dedicated routing resources, which are distinct from the general routing resources. As such, deploying these dedicated resources for communication sidesteps the restriction of static routes and allows a better relocation of circuits for reliability purposes. For evaluation, a case study that uses a NASA/JPL spectrometer data processing application is employed to demonstrate the improved reliability brought about by the implemented configuration controller and the reliability-aware dynamic communication infrastructure. It is observed that up to 74% time saving can be achieved for selective-area error mitigation when compared to state-of-the-art vendor implementations. Moreover, an improvement in overall system reliability is observed when the proposed dynamic communication scheme is deployed in the data processing application. Finally, one area of reconfigurable computing that has received insufficient attention is security. Meanwhile, considering the nature of applications which now turn to reconfigurable computing for accelerating compute-intensive processes, a high premium is now placed on security, not only of the device but also of the applications, from loading to runtime execution. To address security concerns, a novel secure and efficient task configuration technique for task relocation is also investigated, providing configuration time savings of up to 32% or 83%, depending on the device; and resource usage savings in excess of 90% compared to state-of-the-art

    Verkkoliikenteen hajauttaminen rinnakkaisprosessoitavaksi ohjelmoitavan piirin avulla

    Get PDF
    The expanding diversity and amount of traffic in the Internet requires increasingly higher performing devices for protecting our networks against malicious activities. The computational load of these devices may be divided over multiple processing nodes operating in parallel to reduce the computation load of a single node. However, this requires a dedicated controller that can distribute the traffic to and from the nodes at wire-speed. This thesis concentrates on the system topologies and on the implementation aspects of the controller. A field-programmable gate array (FPGA) device, based on a reconfigurable logic array, is used for implementation because of its integrated circuit like performance and high-grain programmability. Two hardware implementations were developed; a straightforward design for 1-gigabit Ethernet, and a modular, highly parameterizable design for 10-gigabit Ethernet. The designs were verified by simulations and synthesizable testbenches. The designs were synthesized on different FPGA devices while varying parameters to analyze the achieved performance. High-end FPGA devices, such as Altera Stratix family, met the target processing speed of 10-gigabit Ethernet. The measurements show that the controller's latency is comparable to a typical switch. The results confirm that reconfigurable hardware is the proper platform for low-level network processing where the performance is prioritized over other features. The designed architecture is versatile and adaptable to applications expecting similar characteristics.Internetin edelleen lisääntyvä ja monipuolistuva liikenne vaatii entistä tehokkaampia laitteita suojaamaan tietoliikenneverkkoja tunkeutumisia vastaan. Tietoliikennelaitteiden kuormaa voidaan jakaa rinnakkaisille yksiköille, jolloin yksittäisen laitteen kuorma pienenee. Tämä kuitenkin vaatii erityisen kontrolloijan, joka kykenee hajauttamaan liikennettä yksiköille linjanopeudella. Tämä tutkimus keskittyy em. kontrolloijan järjestelmätopologioiden tutkimiseen sekä kontrolloijan toteuttamiseen ohjelmoitavalla piirillä, kuten kenttäohjelmoitava järjestelmäpiiri (eng. field programmable gate-array, FPGA). Kontrolloijasta tehtiin yksinkertainen toteutus 1-gigabitin Ethernet-verkkoihin sekä modulaarinen ja parametrisoitu toteutus 10-gigabitin Ethernet-verkkoihin. Toteutukset verifioitiin simuloimalla sekä käyttämällä syntetisoituvia testirakenteita. Toteutukset syntetisoitiin eri FPGA-piireille vaihtelemalla samalla myös toteutuksen parametrejä. Tehokkaimmat FPGA-piirit, kuten Altera Stratix -piirit, saavuttivat 10-gigabitin prosessointivaatimukset. Mittaustulokset osoittavat, että kontrollerin vasteaika ei poikkea tavallisesta verkkokytkimestä. Työn tulokset vahvistavat käsitystä, että ohjelmoitavat piirit soveltuvat hyvin verkkoliikenteen matalantason prosessointiin, missä vaaditaan ensisijaisesti suorituskykyä. Suunniteltu arkkitehtuuri on monipuolinen ja soveltuu joustavuutensa ansiosta muihin samantyyppiseen sovelluksiin

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)(revised 08/2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    The Efficient Design of Time-to-Digital Converters

    Get PDF

    Improving the Scalability of High Performance Computer Systems

    Full text link
    Improving the performance of future computing systems will be based upon the ability of increasing the scalability of current technology. New paths need to be explored, as operating principles that were applied up to now are becoming irrelevant for upcoming computer architectures. It appears that scaling the number of cores, processors and nodes within an system represents the only feasible alternative to achieve Exascale performance. To accomplish this goal, we propose three novel techniques addressing different layers of computer systems. The Tightly Coupled Cluster technique significantly improves the communication for inter node communication within compute clusters. By improving the latency by an order of magnitude over existing solutions the cost of communication is considerably reduced. This enables to exploit fine grain parallelism within applications, thereby, extending the scalability considerably. The mechanism virtually moves the network interconnect into the processor, bypassing the latency of the I/O interface and rendering protocol conversions unnecessary. The technique is implemented entirely through firmware and kernel layer software utilizing off-the-shelf AMD processors. We present a proof-of-concept implementation and real world benchmarks to demonstrate the superior performance of our technique. In particular, our approach achieves a software-to-software communication latency of 240 ns between two remote compute nodes. The second part of the dissertation introduces a new framework for scalable Networks-on-Chip. A novel rapid prototyping methodology is proposed, that accelerates the design and implementation substantially. Due to its flexibility and modularity a large application space is covered ranging from Systems-on-chip, to high performance many-core processors. The Network-on-Chip compiler enables to generate complex networks in the form of synthesizable register transfer level code from an abstract design description. Our engine supports different target technologies including Field Programmable Gate Arrays and Application Specific Integrated Circuits. The framework enables to build large designs while minimizing development and verification efforts. Many topologies and routing algorithms are supported by partitioning the tasks into several layers and by the introduction of a protocol agnostic architecture. We provide a thorough evaluation of the design that shows excellent results regarding performance and scalability. The third part of the dissertation addresses the Processor-Memory Interface within computer architectures. The increasing compute power of many-core processors, leads to an equally growing demand for more memory bandwidth and capacity. Current processor designs exhibit physical limitations that restrict the scalability of main memory. To address this issue we propose a memory extension technique that attaches large amounts of DRAM memory to the processor via a low pin count interface using high speed serial transceivers. Our technique transparently integrates the extension memory into the system architecture by providing full cache coherency. Therefore, applications can utilize the memory extension by applying regular shared memory programming techniques. By supporting daisy chained memory extension devices and by introducing the asymmetric probing approach, the proposed mechanism ensures high scalability. We furthermore propose a DMA offloading technique to improve the performance of the processor memory interface. The design has been implemented in a Field Programmable Gate Array based prototype. Driver software and firmware modifications have been developed to bring up the prototype in a Linux based system. We show microbenchmarks that prove the feasibility of our design
    corecore