7 research outputs found

    Double-frequency buck converter as a candidate topology for integrated envelope elimination and restoration applications in power supply of RFPAs

    Get PDF
    This paper proposes the use of double-frequency (DF) buck converter architecture consisting of a merged structure of high and low frequency buck cells as a candidate topology for envelope elimination and restoration (EER) applications and integrated power supply of RF power amplifiers (RFPA) to obtain favorable tradeoffs in terms of efficiency, switching ripple, bandwidth, and tracking capability. It is shown that having two degrees of freedom in designing the DF buck helps to achieve high efficiency, low output ripples, and tracking capability with low ripples, simultaneously. A comparison analysis is done with regards to the mentioned performance indexes with the standard and three-level buck converters; in addition, the results are validated in HSPICE in BSIM3V3 0.35-µm CMOS process.Peer ReviewedPostprint (author's final draft

    Nonlinear Characterization and Modeling of Radio-Frequency Devices and Power Amplifiers with Memory Effects

    Get PDF
    Despite the fast development of telecommunications systems experienced during the last two decades, much progress is expected in the coming years with the introduction of new solutions capable of delivering fast data-rates and ubiquitous connectivity. However, this development can only happen through the evolution of radio-frequency systems, which should be capable of working at high-power and high-speed. At the same time, the power dissipation of these systems should be minimized. In this dissertation, methods for the characterization and modeling of transistors and power amplifiers are presented, along with the necessary nonlinear measurements techniques. In particular, dynamic electrical effects, originated by the properties of the semiconductor materials and by the system configurations, are investigated. Consequently, these phenomena, which cannot be ignored to obtain the wanted performance, are empirically identified and included in models for Gallium Nitride (GaN) transistors and power amplifiers driven by a dynamic voltage supply

    Double–frequency buck converter as a candidate topology for integrated envelope elimination and restoration applications in power supply of RFPAs

    No full text
    This paper proposes the use of double-frequency (DF) buck converter architecture consisting of a merged structure of high and low frequency buck cells as a candidate topology for envelope elimination and restoration (EER) applications and integrated power Supply of RF power amplifiers (RFPA) to obtain favorable tradeoffs in terms of efficiency, switching ripple, bandwidth, and tracking capability. It is shown that having two degrees of freedom in designing the DF buck helps to achieve high efficiency, low output ripples, and tracking capability with low ripples, simultaneously. A comparison analysis is done with regards to the mentioned performance indexes with the standard and three-level buck converters; in addition, the results are validated in HSPICE in BSIM3V3 0.35-µm CMOS process
    corecore