10,606 research outputs found

    Differential Coding for MIMO and Cooperative Communications

    Get PDF
    Multiple-input multiple-output (MIMO) wireless communication systems have been studied a lot in the last ten years. They have many promising features like array gain, diversity gain, spatial multiplexing gain, interference reduction, and improved capacity as compared to a single-input single-output (SISO) systems. However, the increasing demand of high data-rate in current wireless communications systems motivated us to investigate new rate-efficient channel coding techniques. In this dissertation, we study differential modulation for MIMO systems. Differential modulation is useful since it avoids the need of channel estimation by the receiver and saves valuable bandwidth with a slight symbol error-rate (SER) performance loss. The effect of channel correlation over differential MIMO system has not been studied in detail so far. It has been shown in the literature that a linear memoryless precoder can be used to improve the performance of coherent MIMO system over correlated channels. In this work, we implement precoded differential modulation for non-orthogonal and orthogonal space-time blocks codes (STBCs) over arbitrarily correlated channels. We design precoders based on pair-wise error probability (PEP) and approximate SER for differential MIMO system. The carrier offsets, which result because of the movement of the receiver or transmitter and/or scatterers, and mismatch between the transmit and receive oscillators, are a big challenge for the differential MIMO system. The carrier offsets make the flat fading channel behave as a time-varying channel. Hence, the channel does not remain constant over two consecutive STBC block transmission time-intervals, which is a basic assumption for differential systems and the differential systems break down. Double-differential coding is a key technique which could be used to avoid the need of both carrier offset and channel estimation. In this work, we propose a double-differential coding for full-rank and square orthogonal space-time block codes (OSTBC) with M-PSK constellation. A suboptimal decoder for the double-differentially encoded OSTBC is obtained. We also derive a simple PEP upper bound for the double-differential OSTBC. A precoder is also designed based on the PEP upper bound for the double-differential OSTBC to make it more robust against arbitrary MIMO channel correlations. Cooperative communication has several promising features to become a main technology in future wireless communications systems. It has been shown in the literature that the cooperative communication can avoid the difficulties of implementing actual antenna array and convert the SISO system into a virtual MIMO system. In this way, cooperation between the users allows them to exploit the diversity gain and other advantages of MIMO system at a SISO wireless network. A cooperative communication system is difficult to implement in practice because it generally requires that all cooperating nodes must have the perfect knowledge of the channel gains of all the links in the network. This is infeasible in a large wireless network like cellular system. If the users are moving and there is mismatch between the transmit and receive oscillators, the resulting carrier offset may further degrade the performance of a cooperative system. In practice, it is very difficult to estimate the carrier offset perfectly over SISO links. A very small residual offset error in the data may degrade the system performance substantially. Hence, to exploit the diversity in a cooperative system in the presence of carrier offsets is a big challenge. In this dissertation, we propose double-differential modulation for cooperative communication systems to avoid the need of the knowledge of carrier offset and channel gain at the cooperating nodes (relays) and the destination. We derive few useful SER/bit error rate (BER) expressions for double-differential cooperative communication systems using decode-and-forward and amplify-and-forward protocols. Based on these SER/BER expressions, power allocations are also proposed to further improve the performance of these systems. List of papers included in the dissertation This dissertation is based on the following five papers, referred to in the text by letters (A-E)

    Coherent and Differential Downlink Space-Time Steering Aided Generalised Multicarrier DS-CDMA

    No full text
    This paper presents a generalised MultiCarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) system invoking smart antennas for improving the achievable performance in the downlink. In this contribution, the MC DSCDMA transmitter employs an Antenna Array (AA) and Steered Space-Time Spreading (SSTS). Furthermore, the proposed system employs both Time and Frequency (TF) domain spreading for extending the capacity of the system, which is combined with a user-grouping technique for reducing the effects of Multi-User Interference (MUI). Moreover, to eliminate the high complexity Multiple Input Multiple Output (MIMO) channel estimation required for coherent detection, we also propose a Differential SSTS (DSSTS) scheme. More explicitly, for coherent SSTS detection MVNr number of channel estimates have to be generated, where M is the number of transmit AAs, V is the number of subcarriers and Nr is the number of receive antennas. This is a challenging task, which renders the low-complexity DSSTS scheme attractive. Index Terms—MIMO, MC DS-CDMA, beamforming, spacetime spreading, differential space-time spreading

    Channel estimation and tracking for closed loop EO-STBC with differentially encoding feedback

    Get PDF
    Extended orthogonal space time block coding (EO-STBC) can achieve high transmit diversity over a multiple-input multiple-output (MIMO) channel. To do so, it requires channel state information on the transmitter side, which needs to be estimated and fed back from the receiver. Therefore, this paper explores an estimation and tracking scheme by means of a Kalman filter, which is integrated with EO-STBC detection and exploits the smooth evolution of the channel coefficients by applying differential feedback. For slow fading, we propose the inclusion of a drift vector in the Kalman model, which is motivated by a second order approximation of the underlying channel model and can be shown to offer advantages in terms of temporal smoothness when addressing channels whose coefficient trajectories evolve smoothly

    Maximum Rate of Unitary-Weight, Single-Symbol Decodable STBCs

    Full text link
    It is well known that the Space-time Block Codes (STBCs) from Complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas nn is a power of 2. The rate of the square CODs for n=2an = 2^a has been shown to be a+12a\frac{a+1}{2^a} complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the Minimum-Decoding-Complexity STBCs from Quasi-Orthogonal Designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a2a1\frac{a}{2^{a-1}} complex symbols per channel use for 2a2^a antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.Comment: accepted for publication in the IEEE Transactions on Information Theory, 9 pages, 1 figure, 1 Tabl

    Iteratively Decoded Irregular Variable Length Coding and Sphere-Packing Modulation-Aided Differential Space-Time Spreading

    No full text
    In this paper we consider serially concatenated and iteratively decoded Irregular Variable Length Coding (IrVLC) combined with precoded Differential Space-Time Spreading (DSTS) aided multidimensional Sphere Packing (SP) modulation designed for near-capacity joint source and channel coding. The IrVLC scheme comprises a number of component Variable Length Coding (VLC) codebooks having different coding rates for the sake of encoding particular fractions of the input source symbol stream. The relative length of these source-stream fractions can be chosen with the aid of EXtrinsic Information Transfer (EXIT) charts in order to shape the EXIT curve of the IrVLC codec, so that an open EXIT chart tunnel may be created even at low Eb/N0 values that are close to the capacity bound of the channel. These schemes are shown to be capable of operating within 0.9 dB of the DSTS-SP channel’s capacity bound using an average interleaver length of 113, 100 bits and an effective bandwidth efficiency of 1 bit/s/Hz, assuming ideal Nyquist filtering. By contrast, the equivalent-rate regular VLC-based benchmarker scheme was found to be capable of operating at 1.4 dB from the capacity bound, which is about 1.56 times the corresponding discrepancy of the proposed IrVLC-aided scheme

    A Differential Turbo Detection Aided Sphere Packing Modulated Space-Time Coding Scheme

    No full text
    A signal construction method that combines orthogonal design with sphere packing has recently shown useful performance improvements over the conventional orthogonal design. In this contribution, we extend this concept and propose a novel Sphere Packing (SP) modulated differential Space-Time Block Coded (DSTBC) scheme, referred to here as (DSTBC-SP), which shows performance advantages over conventional DSTBC schemes. We also demonstrate that the performance of DSTBC-SP systems can be further improved by concatenating sphere packing aided modulation with channel coding and performing SP-symbol-to bit demapping as well as channel decoding iteratively. We also investigate the convergence behaviour of this concatenated scheme with the aid of Extrinsic Information Transfer (EXIT) Charts. The proposed turbo-detected DSTBC-SP scheme exhibits a ’turbo-cliff’ at Eb/N0 = 6dB and provides Eb/N0 gains of 23.7dB and 1.7dB at a BER of 10?5 over an equivalent-throughput uncoded DSTBC-SP scheme and a turbo-detected QPSK modulated DSTBC scheme, respectively

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Dispensing with Channel Estimation…

    No full text
    In this article, we investigate the feasibility of noncoherent detection schemes in wireless communication systems as a low-complexity alternative to the family of coherent schemes. The noncoherent schemes require no channel knowledge at the receiver for the detection of the received signal, while the coherent schemes require channel inherently complex estimation, which implies that pilot symbols have to be transmitted resulting in a wastage of the available bandwidth as well as the transmission power

    Turbo Detection of Symbol-Based Non-Binary LDPC-Coded Space-time Signals using Sphere Packing Modulation

    No full text
    A recently proposed space-time signal construction method that combines orthogonal design with sphere packing, referred to here as (STBC-SP), has shown useful performance improvements over Alamouti’s conventional orthogonal design. As a further advance, non-binary LDPC codes have been capable of attaining substantial performance improvements over their binary counterparts. In this paper, we demonstrate that the performance of STBC-SP systems can be further improved by concatenating sphere packing aided modulation with non-binary LDPC codes and performing symbolbased turbo detection. We present simulation results for the proposed scheme communicating over a correlated Rayleigh fading channel. At a BER of 10?6, the proposed symbolbased turbo-detected STBC-SP scheme was capable of achieving a coding gain of approximately 26.6dB over the identical throughput 1 bit/symbol uncoded STBC-SP benchmarker scheme. The proposed scheme also achieved a coding gain of approximately 3dB at a BER of 10?6 over a recently proposed bit-based turbo-detected STBC-SP benchmarker scheme
    corecore