2,294 research outputs found

    Double-Negation Elimination in Some Propositional Logics

    Full text link
    This article answers two questions (posed in the literature), each concerning the guaranteed existence of proofs free of double negation. A proof is free of double negation if none of its deduced steps contains a term of the form n(n(t)) for some term t, where n denotes negation. The first question asks for conditions on the hypotheses that, if satisfied, guarantee the existence of a double-negation-free proof when the conclusion is free of double negation. The second question asks about the existence of an axiom system for classical propositional calculus whose use, for theorems with a conclusion free of double negation, guarantees the existence of a double-negation-free proof. After giving conditions that answer the first question, we answer the second question by focusing on the Lukasiewicz three-axiom system. We then extend our studies to infinite-valued sentential calculus and to intuitionistic logic and generalize the notion of being double-negation free. The double-negation proofs of interest rely exclusively on the inference rule condensed detachment, a rule that combines modus ponens with an appropriately general rule of substitution. The automated reasoning program OTTER played an indispensable role in this study.Comment: 32 pages, no figure

    Ecumenical modal logic

    Full text link
    The discussion about how to put together Gentzen's systems for classical and intuitionistic logic in a single unified system is back in fashion. Indeed, recently Prawitz and others have been discussing the so called Ecumenical Systems, where connectives from these logics can co-exist in peace. In Prawitz' system, the classical logician and the intuitionistic logician would share the universal quantifier, conjunction, negation, and the constant for the absurd, but they would each have their own existential quantifier, disjunction, and implication, with different meanings. Prawitz' main idea is that these different meanings are given by a semantical framework that can be accepted by both parties. In a recent work, Ecumenical sequent calculi and a nested system were presented, and some very interesting proof theoretical properties of the systems were established. In this work we extend Prawitz' Ecumenical idea to alethic K-modalities

    Virtual Evidence: A Constructive Semantics for Classical Logics

    Full text link
    This article presents a computational semantics for classical logic using constructive type theory. Such semantics seems impossible because classical logic allows the Law of Excluded Middle (LEM), not accepted in constructive logic since it does not have computational meaning. However, the apparently oracular powers expressed in the LEM, that for any proposition P either it or its negation, not P, is true can also be explained in terms of constructive evidence that does not refer to "oracles for truth." Types with virtual evidence and the constructive impossibility of negative evidence provide sufficient semantic grounds for classical truth and have a simple computational meaning. This idea is formalized using refinement types, a concept of constructive type theory used since 1984 and explained here. A new axiom creating virtual evidence fully retains the constructive meaning of the logical operators in classical contexts. Key Words: classical logic, constructive logic, intuitionistic logic, propositions-as-types, constructive type theory, refinement types, double negation translation, computational content, virtual evidenc

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure
    corecore