4 research outputs found

    Mesure et caractérisation du mélange dans les systèmes granulaires denses

    Get PDF
    Généralisation de la méthode de RPT aux systemes complexes -- Applicaation de la théorie du chaos en mélange granulaire -- Définition d'une mesure pour mélange granulaire -- Extension de la RPT aux poudres fines -- Vers une vérification et validation de la méthode des éléments discrets -- Analyse d'erreur et analyse dimensionnelle -- Modélisation du mélange granulaire par chaînes de Markov -- Propriétés de mélange des système granulaire markoviens

    Modélisation numérique stochastique des rebonds de particules sur parois rugueuses.

    Get PDF
    Les interactions particules-paroi constituent un important mécanisme partiellement compris dans le cadre des écoulements turbulents diphasiques confinés et à inclusions dispersées. Pour les particules inertielles dont le mouvement est fortement influencé par les rebonds avec la paroi, la bonne prise en compte de ces interactions est cruciale pour une prédiction correcte des propriétés statistiques de l'écoulement. Une première étape à la compréhension des interactions particules/paroi a été de considérer des parois lisses. Cette hypothèse a permis non seulement l'élaboration de base de données de référence, mais aussi la mise en exergue des mécanismes intervenant au cours de ces rebonds et a conduit au développement de modèles eulériens pour les parois lisses (Sakiz & Simonin, 1999). Des investigations expérimentales récentes (Kussin & Sommerfeld, 2004 ; Benson et al., 2005) en canal montrent d'importantes modifications des propriétés statistiques de la phase dispersée d'un écoulement turbulent gaz-particules en raison de la rugosité des parois. Pour modéliser les collisions de particules avec une paroi rugueuse, le mécanisme de "Shadow Effect" proposé par Sommerfeld & Huber (1999), est le modèle lagrangien le plus satisfaisant en comparaison avec l'expérience. Dans le cadre de cette thèse, sa mise à contribution pour la dérivation de conditions aux limites eulériennes à la paroi s'est heurtée à un problème de fermeture lié aux très grands nombres de particules rasantes après le rebond, générées par ce modèle. Des simulations LES/DPS à bas nombre de Reynolds réalisées en canal, dans lesquelles l'effet de la rugosité des parois sur les particules est simulé à l'aide du "Shadow Effect Model" ont par ailleurs confirmé, à travers les fonctions de distribution des angles de rebonds des particules, cet aspect inattendu de ce modèle de paroi rugueuse. En outre l'interpretation des résultats des simulations, en s'appuyant sur l'approche aux moments (Simonin, 1996), a permis demieux appréhender et de proposer des mécanismes responsables des modifications des premiers moments de la phase dispersée. Pour palier les insuffisances du "Shadow Effect Model", nous avons développé un modèle lagrangien "Rough-Wall Multi-Collisions Model", basé sur une description stochastique de l'interaction particule/paroi rugueuse et intègre dans sa formulation des effets de rebonds multiples. Le modèle est d'abord validé par comparaison à des simulations LES/DPS en canal avec des rebonds multiples déterministes des particules sur les parois rugueuses géométriques du canal. Il est ensuite évalué dans le cadre de la simulation de l'étude expérimentale de Sommerfeld & Kussin (2004) en canal, à l'aide de simulations LES/DPS à grand nombre de Reynolds de la phase gazeuse. Le "Rough-Wall Multi-Collisions Model" est au final employé pour dériver des conditions aux limites eulériennes aux parois

    Une nouvelle méthode smoothed particle hydrodynamics : simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques

    Full text link
    Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume.In this thesis we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002) or in the method of regularized Stokeslets (Cortez, 2001). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. We present two variants of this approach, one Langrangian which is commonly used and one Eulerian, simply because we consider that the SPH particles are quadrature points on which the fluid properties are calculated, therefore, these points can be kept fixed in time. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane. The membrane is represented by a cubic spline along which the tension in the membrane is computed and transmitted to the surrounding fluid. The Navier-Stokes equations with singular force due to the membrane are then solved to determine the velocity of the fluid in which the membrane is immersed. The fluid velocity thus obtained is interpolated on the interface, to determine its displacement. We discuss the advantages, in this problem, of fixing the SPH particles, rather than allowing them to move with the fluid. A new coupled Brownian dynamics-SPH method for the computation of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces is next presented. The starting point for the algorithm is the system of coupled Langevin equations for polymer and solvent (CLEPS) (see Oono and Freed (1981) and Öttinger and Rabin (1989), for example) describing, in the present case, the microscopic dynamics of a flowing polymer solution with a bead-spring representation of the macromolecules. Numerical tests of some two-dimensional channel flows reveal that use of a second-order projection scheme coupled with fixed SPH quadrature points leads to second-order velocity convergence and almost second-order pressure convergence, provided that the solution is sufficiently smooth. In the case of large-scale dumbbell and bead-spring chain calculations, an appropriate scaling of the number of grid points as a function of the number of beads N ensures, in the absence of excluded volume forces, that the cost of our algorithm is O(N) flops. Finally, we begin calculations in three dimensions with our SPH model. To this end, we solve in three dimensions the problem of Poiseuille flow between two infinite and parallel plates and the problem of Poiseuille flow in a rectangular infinitely long duct. In addition, we carry out three dimensional computations of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces
    corecore