80 research outputs found

    Generation and Properties of Snarks

    Full text link
    For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is sufficient to prove them for \emph{snarks}, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured. In the first part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n≀36n\leq 36 vertices. Previously lists up to n=28n=28 vertices have been published. In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We find that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also find counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.Comment: Submitted for publication V2: various corrections V3: Figures updated and typos corrected. This version differs from the published one in that the Arxiv-version has data about the automorphisms of snarks; Journal of Combinatorial Theory. Series B. 201

    Measures of edge-uncolorability

    Get PDF
    The resistance r(G)r(G) of a graph GG is the minimum number of edges that have to be removed from GG to obtain a graph which is Δ(G)\Delta(G)-edge-colorable. The paper relates the resistance to other parameters that measure how far is a graph from being Δ\Delta-edge-colorable. The first part considers regular graphs and the relation of the resistance to structural properties in terms of 2-factors. The second part studies general (multi-) graphs GG. Let rv(G)r_v(G) be the minimum number of vertices that have to be removed from GG to obtain a class 1 graph. We show that r(G)rv(G)≀⌊Δ(G)2⌋\frac{r(G)}{r_v(G)} \leq \lfloor \frac{\Delta(G)}{2} \rfloor, and that this bound is best possible.Comment: 9 page

    Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44

    Get PDF
    The family of snarks -- connected bridgeless cubic graphs that cannot be 3-edge-coloured -- is well-known as a potential source of counterexamples to several important and long-standing conjectures in graph theory. These include the cycle double cover conjecture, Tutte's 5-flow conjecture, Fulkerson's conjecture, and several others. One way of approaching these conjectures is through the study of structural properties of snarks and construction of small examples with given properties. In this paper we deal with the problem of determining the smallest order of a nontrivial snark (that is, one which is cyclically 4-edge-connected and has girth at least 5) of oddness at least 4. Using a combination of structural analysis with extensive computations we prove that the smallest order of a snark with oddness at least 4 and cyclic connectivity 4 is 44. Formerly it was known that such a snark must have at least 38 vertices [J. Combin. Theory Ser. B 103 (2013), 468--488] and one such snark on 44 vertices was constructed by Lukot'ka et al. [Electron. J. Combin. 22 (2015), #P1.51]. The proof requires determining all cyclically 4-edge-connected snarks on 36 vertices, which extends the previously compiled list of all such snarks up to 34 vertices [J. Combin. Theory Ser. B, loc. cit.]. As a by-product, we use this new list to test the validity of several conjectures where snarks can be smallest counterexamples.Comment: 21 page

    An exploration of two infinite families of snarks

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2019In this paper, we generalize a single example of a snark that admits a drawing with even rotational symmetry into two infinite families using a voltage graph construction techniques derived from cyclic Pseudo-Loupekine snarks. We expose an enforced chirality in coloring the underlying 5-pole that generated the known example, and use this fact to show that the infinite families are in fact snarks. We explore the construction of these families in terms of the blowup construction. We show that a graph in either family with rotational symmetry of order m has automorphism group of order m2mâșÂč. The oddness of graphs in both families is determined exactly, and shown to increase linearly with the order of rotational symmetry.Chapter 1: Introduction -- 1.1 General Graph Theory -- Chapter 2: Introduction to Snarks -- 2.1 History -- 2.2 Motivation -- 2.3 Loupekine Snarks and k-poles -- 2.4 Conditions on Triviality -- Chapter 3: The Construction of Two Families of Snarks -- 3.1 Voltage Graphs and Lifts -- 3.2 The Family of Snarks, Fm -- 3.3 A Second Family of Snarks, Rm -- Chapter 4: Results -- 4.1 Proof that the graphs Fm and Rm are Snarks -- 4.2 Interpreting Fm and Rm as Blowup Graphs -- 4.3 Automorphism Group -- 4.4 Oddness -- Chapter 5: Conclusions and Open Questions -- References
    • 

    corecore