316 research outputs found

    Codes for Graph Erasures

    Full text link
    Motivated by systems where the information is represented by a graph, such as neural networks, associative memories, and distributed systems, we present in this work a new class of codes, called codes over graphs. Under this paradigm, the information is stored on the edges of an undirected graph, and a code over graphs is a set of graphs. A node failure is the event where all edges in the neighborhood of the failed node have been erased. We say that a code over graphs can tolerate ρ\rho node failures if it can correct the erased edges of any ρ\rho failed nodes in the graph. While the construction of such codes can be easily accomplished by MDS codes, their field size has to be at least O(n2)O(n^2), when nn is the number of nodes in the graph. In this work we present several constructions of codes over graphs with smaller field size. In particular, we present optimal codes over graphs correcting two node failures over the binary field, when the number of nodes in the graph is a prime number. We also present a construction of codes over graphs correcting ρ\rho node failures for all ρ\rho over a field of size at least (n+1)/21(n+1)/2-1, and show how to improve this construction for optimal codes when ρ=2,3\rho=2,3.Comment: To appear in IEEE International Symposium on Information Theor

    Access vs. Bandwidth in Codes for Storage

    Get PDF
    Maximum distance separable (MDS) codes are widely used in storage systems to protect against disk (node) failures. A node is said to have capacity ll over some field F\mathbb{F}, if it can store that amount of symbols of the field. An (n,k,l)(n,k,l) MDS code uses nn nodes of capacity ll to store kk information nodes. The MDS property guarantees the resiliency to any nkn-k node failures. An \emph{optimal bandwidth} (resp. \emph{optimal access}) MDS code communicates (resp. accesses) the minimum amount of data during the repair process of a single failed node. It was shown that this amount equals a fraction of 1/(nk)1/(n-k) of data stored in each node. In previous optimal bandwidth constructions, ll scaled polynomially with kk in codes with asymptotic rate <1<1. Moreover, in constructions with a constant number of parities, i.e. rate approaches 1, ll is scaled exponentially w.r.t. kk. In this paper, we focus on the later case of constant number of parities nk=rn-k=r, and ask the following question: Given the capacity of a node ll what is the largest number of information disks kk in an optimal bandwidth (resp. access) (k+r,k,l)(k+r,k,l) MDS code. We give an upper bound for the general case, and two tight bounds in the special cases of two important families of codes. Moreover, the bounds show that in some cases optimal-bandwidth code has larger kk than optimal-access code, and therefore these two measures are not equivalent.Comment: This paper was presented in part at the IEEE International Symposium on Information Theory (ISIT 2012). submitted to IEEE transactions on information theor

    A Scaling Law to Predict the Finite-Length Performance of Spatially-Coupled LDPC Codes

    Full text link
    Spatially-coupled LDPC codes are known to have excellent asymptotic properties. Much less is known regarding their finite-length performance. We propose a scaling law to predict the error probability of finite-length spatially-coupled ensembles when transmission takes place over the binary erasure channel. We discuss how the parameters of the scaling law are connected to fundamental quantities appearing in the asymptotic analysis of these ensembles and we verify that the predictions of the scaling law fit well to the data derived from simulations over a wide range of parameters. The ultimate goal of this line of research is to develop analytic tools for the design of spatially-coupled LDPC codes under practical constraints

    MDS Array Codes with Optimal Rebuilding

    Get PDF
    MDS array codes are widely used in storage systems to protect data against erasures. We address the rebuilding ratio problem, namely, in the case of erasures, what is the the fraction of the remaining information that needs to be accessed in order to rebuild exactly the lost information? It is clear that when the number of erasures equals the maximum number of erasures that an MDS code can correct then the rebuilding ratio is 1 (access all the remaining information). However, the interesting (and more practical) case is when the number of erasures is smaller than the erasure correcting capability of the code. For example, consider an MDS code that can correct two erasures: What is the smallest amount of information that one needs to access in order to correct a single erasure? Previous work showed that the rebuilding ratio is bounded between 1/2 and 3/4 , however, the exact value was left as an open problem. In this paper, we solve this open problem and prove that for the case of a single erasure with a 2-erasure correcting code, the rebuilding ratio is 1/2 . In general, we construct a new family of r-erasure correcting MDS array codes that has optimal rebuilding ratio of 1/r in the case of a single erasure. Our array codes have efficient encoding and decoding algorithms (for the case r = 2 they use a finite field of size 3) and an optimal update property
    corecore