230 research outputs found

    Machine learning based data-driven discovery of nonlinear phase-field dynamics

    Full text link
    One of the main questions regarding complex systems at large scales concerns the effective interactions and driving forces that emerge from the detailed microscopic properties. Coarse-grained models aim to describe complex systems in terms of coarse-scale equations with a reduced number of degrees of freedom. Recent developments in machine learning (ML) algorithms have significantly empowered the discovery process of the governing equations directly from data. However, it remains difficult to discover partial differential equations (PDEs) with high-order derivatives. In this paper, we present new data-driven architectures based on multi-layer perceptron (MLP), convolutional neural network (CNN), and a combination of CNN and long short-term memory (CNN-LSTM) structures for discovering the non-linear equations of motion for phase-field models with non-conserved and conserved order parameters. The well-known Allen--Cahn, Cahn--Hilliard, and the phase-field crystal (PFC) models were used as the test cases. Two conceptually different types of implementations were used: (a) guided by physical intuition (such as local dependence of the derivatives) and (b) in the absence of any physical assumptions (black-box model). We show that not only can we effectively learn the time derivatives of the field in both scenarios, but we can also use the data-driven PDEs to propagate the field in time and achieve results in good agreement with the original PDEs

    A monolithic conservative level set method with built-in redistancing

    Get PDF
    We introduce a new level set method for representing evolving interfaces. In the case of divergence-free velocity fields, the new method satisfies a conservation principle. Conservation is important for many applications such as modeling two-phase incompressible flow. In the present implementation, the conserved quantity is defined as the integral of a smoothed characteristic function. The new approach embeds level sets into a volume of fluid formulation. The evolution of an approximate signed distance function is governed by a conservation law for its (smoothed) sign. The non-linear level set transport equation is regularized by adding a flux correction term that assures a non-singular Jacobian and penalizes deviations from a distance function. The result is a locally conservative level set method with built-in elliptic redistancing. The continuous model is monolithic in the sense that the level set transport model, the volume of fluid law of mass conservation, and the minimization problem that preserves the approximate distance function property are incorporated into a single equation. There is no need for any extra stabilization, artificial compression, flux limiting, redistancing, mass correction, and other numerical fixes which are commonly used in level set or volume of fluid methods. In addition, there is just one free parameter that controls the strength of regularization and penalization in the model. The accuracy and conservation properties of the monolithic finite element / level set method are illustrated by the results of numerical studies for passive advection of free interfaces

    Modelling and numerical analysis of energy-dissipating systems with nonlocal free energy

    Get PDF
    The broad objective of this thesis is to design finite-volume schemes for a family of energy-dissipating systems. All the systems studied in this thesis share a common property: they are driven by an energy that decreases as the system evolves. Such decrease is produced by a dissipation mechanism, which ensures that the system eventually reaches a steady state where the energy is minimised. The numerical schemes presented here are designed to discretely preserve the dissipation of the energy, leading to more accurate and cost-effective simulations. Most of the material in this thesis is based on the publications [16, 54, 65, 66, 243]. The research content is structured in three parts. First, Part II presents well-balanced first-, second- and high-order finite-volume schemes for a general class of hydrodynamic systems with linear and nonlinear damping. These well-balanced schemes preserve stationary states at machine precision, while discretely preserving the dissipation of the discrete free energy for first- and second-order accuracy. Second, Part III focuses on finite-volume schemes for the Cahn-Hilliard equation that unconditionally and discretely satisfy the boundedness of the phase eld and the free-energy dissipation. In addition, our Cahn-Hilliard scheme is employed as an image inpainting filter before passing damaged images into a classification neural network, leading to a significant improvement of damaged-image prediction. Third, Part IV introduces nite-volume schemes to solve stochastic gradient-flow equations. Such equations are of crucial importance within the framework of fluctuating hydrodynamics and dynamic density functional theory. The main advantages of these schemes are the preservation of non-negative densities in the presence of noise and the accurate reproduction of the statistical properties of the physical systems. All these fi nite-volume schemes are complemented with prototypical examples from relevant applications, which highlight the bene fit of our algorithms to elucidate some of the unknown analytical results.Open Acces

    Skeletonization methods for image and volume inpainting

    Get PDF

    Skeletonization methods for image and volume inpainting

    Get PDF

    Level set and PDE methods for visualization

    Get PDF
    Notes from IEEE Visualization 2005 Course #6, Minneapolis, MN, October 25, 2005. Retrieved 3/16/2006 from http://www.cs.drexel.edu/~david/Papers/Viz05_Course6_Notes.pdf.Level set methods, an important class of partial differential equation (PDE) methods, define dynamic surfaces implicitly as the level set (isosurface) of a sampled, evolving nD function. This course is targeted for researchers interested in learning about level set and other PDE-based methods, and their application to visualization. The course material will be presented by several of the recognized experts in the field, and will include introductory concepts, practical considerations and extensive details on a variety of level set/PDE applications. The course will begin with preparatory material that introduces the concept of using partial differential equations to solve problems in visualization. This will include the structure and behavior of several different types of differential equations, e.g. the level set, heat and reaction-diffusion equations, as well as a general approach to developing PDE-based applications. The second stage of the course will describe the numerical methods and algorithms needed to implement the mathematics and methods presented in the first stage, including information on implementing the algorithms on GPUs. Throughout the course the technical material will be tied to applications, e.g. image processing, geometric modeling, dataset segmentation, model processing, surface reconstruction, anisotropic geometric diffusion, flow field post-processing and vector visualization. Prerequisites: Knowledge of calculus, linear algebra, computer graphics, visualization, geometric modeling and computer vision. Some familiarity with differential geometry, differential equations, numerical computing and image processing is strongly recommended, but not required

    Computational Inverse Problems

    Get PDF
    Inverse problem typically deal with the identification of unknown quantities from indirect measurements and appear in many areas in technology, medicine, biology, finance, and econometrics. The computational solution of such problems is a very active, interdisciplinary field with close connections to optimization, control theory, differential equations, asymptotic analysis, statistics, and probability. The focus of this workshop was on hybrid methods, model reduction, regularization in Banach spaces, and statistical approaches
    corecore