72 research outputs found

    Factored Bandits

    Full text link
    We introduce the factored bandits model, which is a framework for learning with limited (bandit) feedback, where actions can be decomposed into a Cartesian product of atomic actions. Factored bandits incorporate rank-1 bandits as a special case, but significantly relax the assumptions on the form of the reward function. We provide an anytime algorithm for stochastic factored bandits and up to constants matching upper and lower regret bounds for the problem. Furthermore, we show that with a slight modification the proposed algorithm can be applied to utility based dueling bandits. We obtain an improvement in the additive terms of the regret bound compared to state of the art algorithms (the additive terms are dominating up to time horizons which are exponential in the number of arms)

    MergeDTS: A Method for Effective Large-Scale Online Ranker Evaluation

    Full text link
    Online ranker evaluation is one of the key challenges in information retrieval. While the preferences of rankers can be inferred by interleaving methods, the problem of how to effectively choose the ranker pair that generates the interleaved list without degrading the user experience too much is still challenging. On the one hand, if two rankers have not been compared enough, the inferred preference can be noisy and inaccurate. On the other, if two rankers are compared too many times, the interleaving process inevitably hurts the user experience too much. This dilemma is known as the exploration versus exploitation tradeoff. It is captured by the KK-armed dueling bandit problem, which is a variant of the KK-armed bandit problem, where the feedback comes in the form of pairwise preferences. Today's deployed search systems can evaluate a large number of rankers concurrently, and scaling effectively in the presence of numerous rankers is a critical aspect of KK-armed dueling bandit problems. In this paper, we focus on solving the large-scale online ranker evaluation problem under the so-called Condorcet assumption, where there exists an optimal ranker that is preferred to all other rankers. We propose Merge Double Thompson Sampling (MergeDTS), which first utilizes a divide-and-conquer strategy that localizes the comparisons carried out by the algorithm to small batches of rankers, and then employs Thompson Sampling (TS) to reduce the comparisons between suboptimal rankers inside these small batches. The effectiveness (regret) and efficiency (time complexity) of MergeDTS are extensively evaluated using examples from the domain of online evaluation for web search. Our main finding is that for large-scale Condorcet ranker evaluation problems, MergeDTS outperforms the state-of-the-art dueling bandit algorithms.Comment: Accepted at TOI

    Human Preference-Based Learning for High-dimensional Optimization of Exoskeleton Walking Gaits

    Get PDF
    Optimizing lower-body exoskeleton walking gaits for user comfort requires understanding users’ preferences over a high-dimensional gait parameter space. However, existing preference-based learning methods have only explored low-dimensional domains due to computational limitations. To learn user preferences in high dimensions, this work presents LINECOSPAR, a human-in-the-loop preference-based framework that enables optimization over many parameters by iteratively exploring one-dimensional subspaces. Additionally, this work identifies gait attributes that characterize broader preferences across users. In simulations and human trials, we empirically verify that LINECOSPAR is a sample-efficient approach for high-dimensional preference optimization. Our analysis of the experimental data reveals a correspondence between human preferences and objective measures of dynamicity, while also highlighting differences in the utility functions underlying individual users’ gait preferences. This result has implications for exoskeleton gait synthesis, an active field with applications to clinical use and patient rehabilitation

    Preferential Batch Bayesian Optimization

    Full text link
    Most research in Bayesian optimization (BO) has focused on \emph{direct feedback} scenarios, where one has access to exact, or perturbed, values of some expensive-to-evaluate objective. This direction has been mainly driven by the use of \bo in machine learning hyper-parameter configuration problems. However, in domains such as modelling human preferences, A/B tests or recommender systems, there is a need of methods that are able to replace direct feedback with \emph{preferential feedback}, obtained via rankings or pairwise comparisons. In this work, we present Preferential Batch Bayesian Optimization (PBBO), a new framework that allows to find the optimum of a latent function of interest, given any type of parallel preferential feedback for a group of two or more points. We do so by using a Gaussian process model with a likelihood specially designed to enable parallel and efficient data collection mechanisms, which are key in modern machine learning. We show how the acquisitions developed under this framework generalize and augment previous approaches in Bayesian optimization, expanding the use of these techniques to a wider range of domains. An extensive simulation study shows the benefits of this approach, both with simulated functions and four real data sets

    One Arrow, Two Kills: An Unified Framework for Achieving Optimal Regret Guarantees in Sleeping Bandits

    Get PDF
    We address the problem of \emph{`Internal Regret'} in \emph{Sleeping Bandits} in the fully adversarial setup, as well as draw connections between different existing notions of sleeping regrets in the multiarmed bandits (MAB) literature and consequently analyze the implications: Our first contribution is to propose the new notion of \emph{Internal Regret} for sleeping MAB. We then proposed an algorithm that yields sublinear regret in that measure, even for a completely adversarial sequence of losses and availabilities. We further show that a low sleeping internal regret always implies a low external regret, and as well as a low policy regret for iid sequence of losses. The main contribution of this work precisely lies in unifying different notions of existing regret in sleeping bandits and understand the implication of one to another. Finally, we also extend our results to the setting of \emph{Dueling Bandits} (DB)--a preference feedback variant of MAB, and proposed a reduction to MAB idea to design a low regret algorithm for sleeping dueling bandits with stochastic preferences and adversarial availabilities. The efficacy of our algorithms is justified through empirical evaluations
    • …
    corecore