512 research outputs found

    STEROWANIE ORAZ SYNCHRONIZACJA DWUPOZIOMOWEGO FALOWNIKA NAPIĘCIA W WARUNKACH PRZEJŚCIOWEJ ASYMETRII NAPIĘĆ SIECI

    Get PDF
    This paper presents the operation of grid tied, two level voltage source inverter (VSI) during network voltage unbalance. The control system was implemented in synchronous rotating reference frame dq0 (SRF). Two types of control structures were investigated herein. First utilizes the Double Decoupled SRF Phase-locked loop (DDSRF-PLL) synchronisation with positive and negative sequence currents control. Second one is simplified system that does not provide symmetrical components decomposition and decoupling for synchronisation. Simulation results exhibited a superior performance of the DDSRF-PLL control system under grid voltage unbalance.Niniejszy artykuł przedstawia pracę dwupoziomowego falownika napięcia współpracującego z siecią, podczas przejściowej asymetrii napięć. System sterowania został zaimplementowany w wirującym układzie synchronicznym dq0. Przeanalizowano dwa typy sterowania. W pierwszym zastosowano metodę synchronizacji z odprzęganiem DDSRF-PLL wraz z możliwością kontroli prądów składowej zgodnej i przeciwnej. Drugi natomiast w swoje uproszczeni formie nie pozwalała na sterowanie obu składowych symetrycznych, zabrakło również odprzęgania podczas synchronizacji z siecią. Wyniki symulacji pokazały o wiele lepsze działanie pierwszej metody sterowania

    Voltage sensorless based virtual flux control of three level NPC back-to-back converter dfigunder grid fault

    Get PDF
    In this paper, a harmonic elimination of grid and stator currents of doubly fed induction generator (DFIG) in case of grid fault without line voltage sensors is proposed . This can be achieved by compensating power based on virtual flux voltage sensorless technique. Direct power control with space vector modulation (DPC-SVM) is used to control both grid-side (GSC)and rotor-side converters (RSC). To achieve the control objective, compensated active and reactive powers are calculated based on virtual flux technique with balanced and harmonic free current as a control target. A theoretical analysis of active and reactive powers under unbalanced voltage source is clearly demonstrated and the effect of grid fault on the performance of DFIG is profoundly discussed. Simulation results verified the effectiveness of the modified control strategy

    VAr Compensation Based Stability Enhancement Of Wind Turbine Using STATCOM

    Full text link
    Maintenance of power system stability becomes vital during disturbances like faults, contingency etc. This work deals with a novel priority oriented optimal reactive power compensation of Doubly-Fed Induction Generator (DFIG) based wind turbine using Static Synchronous Compensator (STATCOM). A multi-objective problem will be formulated to maintain voltage within its tolerance levels using Voltage Severity Index (VSI) and to mitigate low frequency oscillations by using Transient Power Severity Index (TPSI) during post-fault conditions. An optimal solution to this proposed problem will be obtained using Fuzzy Logic. In order to justify the proposed methodology it is simulated and tested using 2 MW DFIG with MATLAB- Simulink.nbs

    Power Quality Improvement of a Solar Energy Conversion System by a Coordinated Active and LCL Filtering

    Get PDF
    Power converters play an essential role in Photovoltaic (PV) system to maximize the power transfer to the electrical grid. However, the generated harmonics in the grids due to these power converters and nonlinear loads are considered one of the encountered problems to overcome. This paper presents a decoupled control of PV field real power and reactive power injected to the high voltage network via a PWM inverter by using fuzzy logic controllers. Elsewhere, a procedure based on a coordinated active and LCL filtering is proposed to mitigate the harmonic current introduced by a nonlinear load and the inverter itself in such a way to enhance the power quality injected into the grid. The results obtained in the present study show the good performance of the suggested hybrid filtering approach and demonstrate that almost all harmonics orders of the grid current are well mitigated; the current Total Harmonic Distortion (THD) meets its standard and consequently the power quality is considerably enhanced

    Performance of direct power controlled grid-connected voltage source converters

    Get PDF
    PhD ThesisIn this thesis the performance of direct power controlled grid-connected voltage source converters (VSCs) is investigated. Of particular interest is the stability of the controller with the third-order LCL filter employed as the grid filter, effect of grid impedance variations and grid voltage distortion, and current limitation during voltage dips. The control scheme implemented is virtual-flux direct power control with space vector modulation (VF-DPC-SVM). By mathematical modelling and stability analysis, it is found that the closed-loop power control system is stable for all values of proportional gain when the current sensors are on the inverter side of the LCL filter. The inverter current together with the estimated grid virtual-flux is used to estimate the active power and the reactive power. The difference between the estimated reactive power and the reactive power on the grid side is compensated for, using a new reactive power error compensation scheme based on the estimated capacitor current. The control system is found to be robust to changes in grid inductance, and remains stable for a range of grid inductance values, and controller proportional gain. It is demonstrated in simulation and experimentally that the total harmonic distortion (THD) of the current injected by the VSC is less than the limit of 5 %, set by standards, for all different values of grid inductance and proportional gain. This is true even in the presence of significant grid voltage distortion. To control the VSC during voltage dips without damaging the semiconductor devices, a new current limiting algorithm is proposed and implemented. The positive-sequence component of the virtual-flux is used for synchronization and power estimation to achieve balanced, undistorted currents during unsymmetrical voltage dips. Experimental results show that the current achieved during unsymmetrical voltage dips is balanced and has a THD of less than 3 %.Commonwealth Scholarship and Fellowship Plan, Copperbelt Universit

    The Modeling and Advanced Controller Design of Wind, PV and Battery Inverters

    Get PDF
    Renewable energies such as wind power and solar energy have become alternatives to fossil energy due to the improved energy security and sustainability. This trend leads to the rapid growth of wind and Photovoltaic (PV) farm installations worldwide. Power electronic equipments are commonly employed to interface the renewable energy generation with the grid. The intermittent nature of renewable and the large scale utilization of power electronic devices bring forth numerous challenges to system operation and design. Methods for studying and improving the operation of the interconnection of renewable energy such as wind and PV are proposed in this Ph.D. dissertation.;A multi-objective controller including is proposed for PV inverter to perform voltage flicker suppression, harmonic reduction and unbalance compensation. A novel supervisory control scheme is designed to coordinate PV and battery inverters to provide high quality power to the grid. This proposed control scheme provides a comprehensive solution to both active and reactive power issues caused by the intermittency of PV energy. A novel real-time experimental method for connecting physical PV panel and battery storage is proposed, and the proposed coordinated controller is tested in a Hardware in the Loop (HIL) experimental platform based on Real Time Digital Simulator (RTDS).;This work also explores the operation and controller design of a microgrid consisting of a direct drive wind generator and a battery storage system. A Model Predictive Control (MPC) strategy for the AC-DC-AC converter of wind system is derived and implemented to capture the maximum wind energy as well as provide desired reactive power. The MPC increases the accuracy of maximum wind energy capture as well as minimizes the power oscillations caused by varying wind speed. An advanced supervisory controller is presented and employed to ensure the power balance while regulating the PCC bus voltage within acceptable range in both grid-connected and islanded operation.;The high variability and uncertainty of renewable energies introduces unexpected fast power variation and hence the operation conditions continuously change in distribution networks. A three-layers advanced optimization and intelligent control algorithm for a microgrid with multiple renewable resources is proposed. A Dual Heuristic Programming (DHP) based system control layer is used to ensure the dynamic reliability and voltage stability of the entire microgrid as the system operation condition changes. A local layer maximizes the capability of the Photovoltaic (PV), wind power generators and battery systems, and a Model Predictive Control (MPC) based device layer increases the tracking accuracy of the converter control. The detail design of the proposed SWAPSC scheme are presented and tested on an IEEE 13 node feeder with a PV farm, a wind farm and two battery-based energy storage systems
    corecore