117 research outputs found

    Basins of Attraction for Chimera States

    Get PDF
    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we evaluate asymptotic states and associated destination maps, and demonstrate that basins form a complex twisting structure in phase space. Understanding the basins' precise nature may help in the development of control methods to switch between chimera patterns, with possible technological and neural system applications.Comment: Please see Ancillary files for the 4 supplementary videos including description (PDF

    Asymmetry--induced effects in coupled phase oscillator ensembles: Routes to synchronization

    Get PDF
    A system of two coupled ensembles of phase oscillators can follow different routes to inter-ensemble synchronization. Following a short report of our preliminary results [Phys. Rev. E. {\bf 78}, 025201(R) (2008)], we present a more detailed study of the effects of coupling, noise and phase asymmetries in coupled phase oscillator ensembles. We identify five distinct synchronization regions, and new routes to synchronization that are characteristic of the coupling asymmetry. We show that noise asymmetry induces effects similar to that of coupling asymmetry when the latter is absent. We also find that phase asymmetry controls the probability of occurrence of particular routes to synchronization. Our results suggest that asymmetry plays a crucial role in controlling synchronization within and between oscillator ensembles, and hence that its consideration is vital for modeling real life problems

    Collective power: Minimal model for thermodynamics of nonequilibrium phase transitions

    Get PDF
    We propose a thermodynamically consistent minimal model to study synchronization which is made of driven and interacting three-state units. This system exhibits at the mean-field level two bifurcations separating three dynamical phases: a single stable fixed point, a stable limit cycle indicative of synchronization, and multiple stable fixed points. These complex emergent dynamical behaviors are understood at the level of the underlying linear Markovian dynamics in terms of metastability, i.e. the appearance of gaps in the upper real part of the spectrum of the Markov generator. Stochastic thermodynamics is used to study the dissipated work across dynamical phases as well as across scales. This dissipated work is found to be reduced by the attractive interactions between the units and to nontrivially depend on the system size. When operating as a work-to-work converter, we find that the maximum power output is achieved far-from-equilibrium in the synchronization regime and that the efficiency at maximum power is surprisingly close to the linear regime prediction. Our work shows the way towards building a thermodynamics of nonequilibrium phase transitions in conjunction to bifurcation theory.Comment: 20 pages, 12 figure
    • …
    corecore