158 research outputs found

    Methods and Instrumentation for Non-Invasive Assessment of the Cardiovascular Condition

    Get PDF
    Tese de doutoramento em Física (Pré-Bolonha), Especialidade de Física Tecnológica, apresentada à Faculdade de Ciências e Tecnologia da Universidade de CoimbraAs doenças cardiovasculares (DCVs) são a principal causa de morte a nível mundial e largamente responsáveis pelos custos crescentes nos sistemas de saúde. Nos últimos anos, a comunidade médica tem vindo a demonstrar um grande interesse na avaliação da rigidez arterial local, pressão arterial central e na análise da onda de pressão, devido aos seus valores preditivos no desenvolvimento deste tipo de patologias. Apesar da sua relevância, estes parâmetros hemodinâmicos permanecem particularmente difíceis de medir na prática clínica, já que a maioria dos dispositivos disponíveis exigem elevados conhecimentos técnicos (introduzindo a dependência de um operador), tecnologias dispendiosas ou apresentam abordagens de análise ineficientes. Este trabalho de investigação encontra assim a sua motivação no potencial impacto que instrumentação não-invasiva, exata e de fácil utilização pode ter na monitorização da condição hemodinâmica e no diagnóstico precoce e acompanhamento de DCVs. Neste contexto, uma nova geração de protótipos baseados na combinação de diferentes tipos de sensores eletromecânicos, bem como um conjunto de algoritmos de processamento de sinal adequados à extração de múltiplos parâmetros hemodinâmicos foram desenvolvidos. Dependendo do marcador de risco cardiovascular a ser avaliado, dois grandes grupos de dispositivos foram projetados. O primeiro grupo, focado na avaliação da rigidez arterial local, explorou uma configuração dupla inovadora com dois sensores acústicos ou piezoelétricos (PZs) para a medição da velocidade da onda de pulso (VOP) e outros índices temporais relevantes, num curto segmento da artéria carótida. O outro grupo, centrado na avaliação contínua da pressão arterial sanguínea (PAS) e onda de pressão arterial (OPA), também na artéria carótida, usou uma unidade vibrador-acelerómetro montada num mesmo suporte que permitiu ao acelerómetro detetar as vibrações produzidas, atenuadas e moduladas em amplitude quando em contacto mecânico com a parede do vaso. Os protótipos desenvolvidos foram extensivamente caracterizados em sistemas de bancada de teste, desenvolvidos para este efeito e capazes de reproduzir a variabilidade de uma ampla gama de situações clinicamente relevantes, bem como em condições in vivo. Relativamente à avaliação da rigidez arterial local, a primeira e segunda gerações de protótipos desenvolvidos apresentaram boa exatidão nos ensaios de resolução temporal realizados em tubos elásticos de bancadas de teste. O algoritmo de correlação cruzada exibiu a capacidade de medir VOPs altas (≈ 19 ms-1 e 14 ms-1) com erros relativos e coeficientes de variação inferiores a 10 % para os diferentes protótipos. Os sinais adquiridos provaram ser robustos e repetíveis, não sofrendo efeitos de crosstalk. Os resultados obtidos no estudo de validação pré-clínica em vinte indivíduos saudáveis com a segunda geração de protótipos foram ainda bastante satisfatórios. As VOPs carotídeas médias obtidas apresentaram uma correlação linear e forte entre si, estando os resultados próximos dos valores obtidos noutros estudos de referência. Além disso, a capacidade de reproduzir perfis de onda pressão distintos usando as sondas PZs foi também mostrada, quer utilizando o processo de desconvolução quer um circuito eletrónico integrador dedicado. No que diz respeito à avaliação da PAS e OPA, o processo de desmodulação produziu excelentes resultados na recuperação da morfologia da onda de pressão em condições de bancada de teste e in vivo. Para os dois protótipos desenvolvidos, várias formas de onda foram extraídas, com exatidão, das portadoras moduladas de aceleração, corrente ou potência elétricas, usando os algoritmos de deteção do envelope e do produto. Na bancada de teste foi possível reproduzir a forma de onda de pressão para posições de aplanação do tubo elástico sucessivamente mais elevadas com um erro quadrático médio de 2.4 ± 0.51 %, quando considerado o melhor método de extração. A eficácia de um novo método de calibração focado na utilização de curvas empíricas que convertem aceleração em pressão foi também demonstrado. Através da conservação da amplitude da portadora de aceleração, foi possível determinar os valores de pressão máximo, mínimo, médio e de pulso com erros relativos inferiores a 10 % em condições de bancada. Além disso, as diferenças de pressão entre o último protótipo desenvolvido e o sistema de referência foram, em média, ≤ 5 ± 8 mmHg, satisfazendo os critérios de exatidão de sistemas de medição de PAS clinicamente validados. Embora estudos de validação clínica sejam ainda necessários, os resultados globais obtidos neste trabalho para os dois principais tipos de protótipos dão bons indicadores quanto à sua utilização como alternativas válidas aos sistemas atualmente disponíveis, tanto em ambientes clínico quanto de investigação.Cardiovascular diseases (CVDs) are the leading cause of death worldwide and largely responsible for the ever increasing costs in healthcare systems. In the last few years, the medical community has demonstrated a great interest in local arterial stiffness, central blood pressure assessment and pressure waveform analysis, due to their predictive values in the development of this type of pathologies. Despite their significance, these hemodynamic parameters remain particularly challenging to measure in standard clinical practice since most available devices require high technical expertise (introducing operator dependence), burdensome technologies and/or present ineffective analysis approaches. This research work finds its motivation in the potential impact that non-invasive, accurate and easy-to-use instrumentation could have on the monitoring of hemodynamic condition and on the diagnosis and control of early stages of CVDs. In this context, a new generation of prototypes based on the combination of different types of electromechanical sensors, along with a set of signal processing algorithms suited to the extraction of multiple hemodynamic parameters were developed. Two major groups of devices were designed depending on the cardiovascular risk marker to be assessed. The first group, focused on local arterial stiffness evaluation, explored an innovative double headed probe configuration of acoustic or piezoelectric (PZ) sensors for the measurement of pulse wave velocity (PWV) and other relevant time-based indices, in a short segment of the carotid artery. The other main group, centered on the continuous assessment of arterial blood pressure (ABP) and arterial pressure waveform (APW), also at the carotid artery, used a vibrator-accelerometer unit mounted in a common support that enabled the accelerometer to sense the produced vibrations, attenuated and modulated in amplitude when in mechanical contact with the vessel wall. The developed prototypes were extensively characterized in test bench systems, purposely built and capable of reproducing the variability of a wide range of clinically relevant situations, as well as in in vivo conditions. Regarding local arterial stiffness evaluation, the first and second generations of developed prototypes presented good accuracy in time resolution experiments on elastic tubes at the test bench. Cross-correlation algorithm exhibited the capability of measuring high PWVs (≈ 19 ms-1 and 14 ms-1) with relative errors and coefficients of variation lower than 10 % for the different prototypes. The acquired signals proved to be robust and repeatable, not suffering from crosstalk effect. The results obtained in a pre-clinical validation trial of twenty healthy subjects with the second generation of prototypes were very satisfactory, demonstrating that the mean carotid PWVs obtained were linearly and strongly correlated and were in agreement with other reference studies. Additionally, the ability to reproduce distinct wave pressure profiles using the PZs probes was also shown, either using the demodulation algorithm-based process or a special circuit for electronic integration. Concerning APW and ABP assessment, the demodulation process yielded excellent results in recovering the morphology of pressure wave in test bench and in in vivo conditions. For the two developed prototypes, several waveforms were accurately extracted from the acceleration, current or power modulated carriers using the envelope and product detector algorithms. It was possible to reproduce the pressure waveform for successive higher applanation positions of the elastic tube at the test bench with a root mean square error of 2.4 ± 0.51 %, when considering the best extracting method. The effectiveness of a novel calibration method focused on the use of empirical curves which convert acceleration into pressure was also demonstrated. Through the conservation of the acceleration carrier amplitude, it was possible to determine the maximum, minimum, mean and pulse pressure values with relative errors lower than 10 % in bench conditions. Also, the mean pressure differences between the latest prototype and the reference system were, on average, ≤ 5 ± 8 mmHg, satisfying the accuracy criteria of clinically validated ABP devices. Although clinical validation studies are still required, the global results obtained in this work for the two major types of prototypes provide great prospects regarding their use as valid alternatives to currently available systems, both in clinical and research settings

    Non-Invasive Hemodynamic Parameters Assessment using Optoelectronic Devices

    Get PDF
    Tese de doutoramento em Engenharia Biomédica, apresentada à Faculdade de Medicina da Universidade de CoimbraA grande incidência das doenças cardiovasculares no mundo estimulou a procura de novas soluções que permitam a deteção precoce de processos patológicos associados a este tipo de doenças. Especial ênfase foi dada a métodos que permitem a monitorização da pressão arterial e da forma de onda de pressão arterial, que fornecem uma ferramenta precisa que complementa o diagnóstico baseado em múltiplos parâmetros. Da análise das características da forma de onda da pressão arterial, e da sua velocidade de propagação, podem ser extraídas importantes parâmetros clínicos de modo a avaliar o risco cardiovascular, a adaptação vascular e a eficácia terapêutica. O uso de múltiplos parâmetros permite minimizar erros na estimação de um dos parâmetros. As soluções emergentes para a monitorização cardiovascular têm-se afastado de tecnologias invasivas e caras para soluções não invasivas e sem contacto. Neste sentido, os sistemas ópticos apresentam uma grande vantagem devido ao grande progresso tecnológico sofrido nas últimas décadas. A natureza de não contacto desta tecnologia permite a medição sem distorção da forma da onda arterial ultrapassando as limitações dos aparelhos comerciais usados para este tipo de avaliação. O principal objetivo deste trabalho consistia em demonstrar que é possível adquirir através do uso de uma metodologia óptica, a forma da onda de pressão arterial sem contacto, com uma configuração que permite medir a velocidade onda de pulso (VOP) local e determinar os principais parâmetros usando algoritmos dedicados. Foram desenvolvidos quatro protótipos: três baseados em luz não-coerente e um em luz coerente. As sondas foram desenvolvidas usando uma configuração comum, composta por dois fotodetectores distanciados de 2 cm, o que garante a deteção da onda de pulso em dois pontos distintos e permite uma determinação rigorosa do tempo de trânsito. Nas sondas de luz não-coerente foram testados três fotodetectores: fotodíodos de avalanche, fotodíodos planares, e fotodíodos de efeito lateral (LEP). Os componentes do sistema óptico (protótipos das sondas e caixa de aquisição) foram desenhados com as características físicas que permitem o uso clínico, como a portabilidade, o tamanho compacto, leves, de baixo consumo e com materiais de baixo custo, ergonómicas para o operador e confortáveis para o paciente, de modo a serem consideradas uma solução interessante para a comercialização. Os testes in vivo permitiram a seleção da melhor combinação sonda/algoritmo para a determinação da PWV, usando o método da correlação e a sonda baseada em fotodíodos planares que demonstrou ser mais eficiente para a aquisição de sinais em humanos. O sistema óptico desenvolvido mostrou boa reprodutibilidade na avaliação inter e intra-operador. Um estudo alargado foi desenvolvido em 131 sujeitos jovens, com um valor médio PWV de 33.33±0.72 ms-1, confirmando o seu aumento com a idade. O teste comparativo entre a onda de distensão medida com o sistema óptico na carótida e o perfil da onda de pressão adquirida invasivamente por um cateter intra-arterial mostrou uma grande correlação entre as duas ondas (valor médio de 0.958), validando a capacidade das sondas ópticas para estimar a forma da onda de pulso de modo não-invasivo e sem contacto. A sonda óptica baseada em luz coerente foi testada em combinação com algoritmos de processamento de sinal baseados nos métodos short time Fourier transform e empirical mode decomposition, demonstrando ser capaz de determinar os pontos característicos da forma de onda com baixo erro (menor que 5ms). Uma configuração alternativa foi testada usando um fotodetector com uma maior área que permitiu obter o efeito de self-mixing fora da cavidade laser. Esta característica abriu a possibilidade de construir uma nova sonda adaptada a esta nova técnica de modo a melhorar a qualidade do sinal e permitir uma aplicação biomédica. Globalmente, os resultados obtidos para a metodologias desenvolvidas (protótipos e ferramentas de processamento de sinal associados) mostraram ser possível de medir a onda de pulso arterial na carótida, para determinar vários parâmetros clínicos e avaliar a condição cardiovascular.The world wide incidence of cardiovascular diseases (CVDs), has spurred the research efforts targeting new solutions that may be able to perform an early detection of the pathological processes associated with these diseases. Special emphasis has been given to the methods that allow the monitoring of the blood pressure and the arterial pulse waveform, thus providing a more precise tool to complement the diagnosis process based on a multi-parameter assessment approach. From the analysis of arterial pulse pressure waveform features, and its propagation velocity, important clinical parameters can be extracted in order to evaluate the CVD risk, the vascular adaptation and the therapeutic efficacy. The use of multiple parameters allows to minimize the error when compared to the approach where a subject is classified solely based on a single parameter. Emerging trends in cardiovascular monitoring are moving away from invasive and costly technologies towards non-invasive and low-cost solutions. In this sense, optical solutions represent a great advantage due to the immense technological progresses observed in the recent decades. The truly non-contact nature of optical techniques allows measurements without distortion in the shape of the pulse curve, which is one of the main limitations of the current commercial devices used in hemodynamic parameters assessment. The main objective of this work consists in demonstrating that with an optical system it is possible to acquire the arterial pulse waveform with a configuration that allows the local pulse wave velocity (PWV) measurement and the determination of the most important clinical parameters using dedicated algorithms, without physical contact with the skin of the patient. Four prototypes were developed: three based in non-coherent light and one with coherent light. All the developed optical probes have a common design structure. They include two identical photodetectors placed 2 cm apart from each other to guarantee accurate determination of local pulse transit time. Relatively to the non-coherent light probes three different probes base on photodetectors were tested: an avalanche photodiode, a planar photodiode and a lateral effect photodiode (LEP). The optical system components (probe prototypes and acquisition box) were designed to meet specific requirements that allow the clinical use, such as portability, compact size and low weight, low cost, limited power consumption, ergonomics and easy user-interface in order to be considered as an interesting solution for commercial purposes. The in vivo tests allowed the selection of the best algorithm and probe combination to determine PWV: cross-correlation algorithm and the probe with planar photodiodes demonstrated to be the most efficient. This system showed good reproducibility, as evaluated by both inter-operator and intra-operator analysis. A large study was performed in 131 young subjects, obtaining a mean value for PWV of 3.33±0.72 ms-1, thus confirming its significant increase with age. A comparative test between the distension waveform measured with the optical probe at the carotid artery and the invasive profile of the pulse pressure acquired by an intra arterial catheter showed a strong correlation (mean value of 0.958), and validates the ability of this non-invasive device to estimate the arterial pulse waveform. Also a coherent light probe was developed and tested using several processing techniques based on the short time Fourier transform and empirical mode decomposition algorithm. This approach demonstrated the ability to determine the main feature points in the waveform with low error in the pulse transit time determination (less than 5ms). An alternative configuration for the Doppler effect-based probe was tested, using a photodetector with a larger area in order to obtain the self-mixing effect outside the laser cavity. This feature opened the possibility to improve the quality of the signal which may foresee potential future biomedical applications. Globally, the results obtained with the developed methodologies (prototypes and associated algorithmic tools) proved that it is possible to measure the arterial pulse waveform in the carotid artery, to determine several clinical parameters and assess the cardiovascular condition with optical technology.Fundação para a Ciência e Tecnologia - SFRH / BD / 79334 / 201

    An inverse transmission line model of the lower limb arterial system

    Get PDF
    Includes bibliography. Includes disk in pocket at back of book

    The Effects of Prolonged Sitting on Cerebral Perfusion and Executive Function

    Get PDF
    The study purpose was to determine if prolonged (3-hr) sitting impaired (a) cerebral perfusion and executive function, (b) systemic vascular function, and (c) if heel raise exercises prevent impairments. Subjects (n=20) participated in a control (CON) and experimental heel-raise (HEEL) study. Near Infra-red Spectroscopy was used to measure cerebral perfusion and venous pooling in the legs. A Stroop Task was used to assess executive function. Vascular health was measured using pulse wave velocity and pulse wave analysis. Cerebral perfusion and Stroop was not significantly changed.However, venous pooling did occur in the legs (p<0.05) and systemic vascular health was negatively affected (p<0.05) in both days. Prolonged sitting may not acutely affect cerebral perfusion or executive function in young, healthy individual like it negatively effects vascular health. The link between vascular interruption and brain function during prolonged sitting is unclear and future research should address alternate assessments of cerebral autoregulation and additional measures of cognition be examined.Master of Art

    Mechanical Circulatory Support in End-Stage Heart Failure

    Get PDF

    Aerospace medicine and biology: A cumulative index to the continuing bibliography of the 1973 issues

    Get PDF
    A cumulative index to the abstracts contained in Supplements 112 through 123 of Aerospace Medicine and Biology A Continuing Bibliography is presented. It includes three indexes: subject, personal author, and corporate source

    Μέτρηση αιμοδυναμικών χαρακτηριστικών με απεικόνιση μαγνητικού συντονισμού

    Get PDF
    Στο ΚΕΦΑΛΑΙΟ 1 παρουσιάζονται οι πιο βασικές αρχές της ρευστοδυναμικής. Αναφέρονται οι εξισώσεις Navier- Stokes οι οποίες με την εξίσωση του συνεχούς της μάζας και με συνθήκες περιορισμού, οδηγούν στο φορμαλισμό της ροής. Αυτές οι εξισώσεις και τα χαρακτηριστικά ροής, όπως η διατμητική τάση των αγγειακών τοιχωμάτων, θα αποτελέσουν το αντικείμενο διερεύνησης. Το ΚΕΦΑΛΑΙΟ 2 αναφέρεται περιγραφικά στη τεχνική της Μαγνητικής Αγγειογραφίας, στην οποία βασίζονται οι λήψεις όλων των δεδομένων στη ν εργασία αυτή. Το ΚΕΦΑΛΑΙΟ 3 παρουσιάζει τα υλικά και τη μέθοδο που ακολουθήθηκαν για τον υπολογισμό του WSS. Το ΚΕΦΑΛΙΑΟ 4 παρουσιάζει τα υλικά και τη μέθοδο για τον υπολογισμό των θεμελιωδών χαρακτηριστικών της αιματικής ροής σε συνθήκες εργαστήριου. Στα ΚΕΦΑΛΑΙΑ 5 και 6 παρουσιάζονται όλα τα αποτελέσματα και από τα δυο μέρη (in vivo και in-vitro) υπό τη μορφή πινάκων και γραφημάτων. Το ΚΕΦΑΛΑΙΟ 7 χωρίζεται στο τμήμα Ι και ΙΙ τα οποία γίνεται η ανάλυση και ο σχολιασμός των αποτελεσμάτων που παρουσιάστηκαν στα κεφαλαία 5 (Ι) και 6 (ΙΙ) αντίστοιχα. Το ΚΕΦΑΛΑΙΟ 8 οδηγεί τον αναγνώστη στο σύνολο των συμπερασμάτων και τη συσχέτιση τους με την κλινική πράξη. Η διατριβή ολοκληρώνεται με τους περιορισμούς που αναπόφευκτα παρουσιάζονταιIn CHAPTER 1, the reader is introduced the fundamental fluid dynamics principles including the Navier- Stokes set of equations, which together with the mass conservation equation, and following the imposed boundary conditions, they give rise –the Poiseuille’s Law of fluid CHAPTER 2 deals with Magnetic Resonance Angiography and its applications to the human circulatory system. CHAPTER 3 presents the materials and method that were followed in order to calculate WSS equations in clinical practice CHAPTER 4 in a similar way describes the IN-VITRO set up and instrumentation that was used in order to simulate blood flow. CHAPTERS 5 and 6 display all the acquired data from the in-vivo and in-vitro set ups. CHAPTER 7 is divided into two sections. The first refers to the analysis and discussion of the in vivo results and the second refers to the analysis and discussion of the in-vitro results . CHAPTER 8 takes the reader to the sum of all the conclusions. The thesis concludes with a brief presentation of the inevitable limitations of the work and finally with a complete proposal for future works that can bring the study of hemodynamic parameters using MRA to a new era
    corecore