5,938 research outputs found

    Automatic Document Image Binarization using Bayesian Optimization

    Full text link
    Document image binarization is often a challenging task due to various forms of degradation. Although there exist several binarization techniques in literature, the binarized image is typically sensitive to control parameter settings of the employed technique. This paper presents an automatic document image binarization algorithm to segment the text from heavily degraded document images. The proposed technique uses a two band-pass filtering approach for background noise removal, and Bayesian optimization for automatic hyperparameter selection for optimal results. The effectiveness of the proposed binarization technique is empirically demonstrated on the Document Image Binarization Competition (DIBCO) and the Handwritten Document Image Binarization Competition (H-DIBCO) datasets

    Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    Full text link
    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image non-local self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 35 pages. This paper is under review in IEEE TI

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    QualityAdaptive sharpness enhancement and noise removal of a colour images based on the bilateral filtering

    Get PDF
    In this paper, we present the Adaptive Bilateral Filter (ABF) for sharpness enhancement and noise removal of a colour images. The ABF sharpens an image by increasing the slope of the edges without producing overshoot or undershoot. It is an approach to sharpness enhancement that is fundamentally different from the unsharp mask (USM). This new approach to slope restoration also differs significantly from previous slope restoration algorithms. Compared with an USM based sharpening method, the optimal unsharp mask (OUM), In terms of noise removal, ABF will outperform the bilateral filter and the OUM. ABF works well for both gray images and color images. Due to operation of sharpening of colour images along the edge slope tend to poseterize the image using ABF by pulling up or pulling down the colour images. The proposed method is effective at removing signal noise while enhancing the experimental results in perceptual quality both quantatively and qualitatively

    Development of image restoration techniques

    Get PDF
    Image denoising and image deblurring are studied as part of the thesis. In deblurring, blind deconvolution is investigated. Out of the several classes of blind deconvolution techniques, Non parametric Methods based on Image Constraints are studied at greater depth. A new algorithm based on the Iterative Blind Deconvolution(IBD) technique is developed. The algorithm makes use of spatial domain constraints of non-negativity and support. The Fourier-domain constraint may be described as constraining the product of the Fourier spectra of the image f and the Fourier spectra of the point spread function h to be equal to the convolution spectrum. Within each iteration, the algorithm switches between spatial domain and frequency domain and imposes known constraints on each. The convergence of the original IBD can be accelerated by limiting high magnitude values in frequency domain of both estimated image and point spread function. The new algorithm converges within less than 25 iterations where as the original IBD took nearly 500 iterations. Inclusion of the support constraint in the spatial domain improves quality of the restored image. Also, sum of the spatial domain values of the point spread function should be made equal to one at the end of each iteration, for preventing the loss of image intensity. PSNR values calculated for restored images show signi¯cant improvement in image quality. A PSNR of 17.8dB is obtained for the improved scheme where as it is 14.3dB for the original IBD. A new stopping criteria based on standard deviation of the image power for last k iterations is de¯ned for stopping the algorithm when it converges. In denoising, an edge retrieval technique is developed which preserves the image details along with e®ectively removing impulse noise. Noisy pixels are detected in the ¯rst phase and in the next phase those pixel values are replaced with an estimate of the actual value. For dealing with the wrong classi¯cation of edge pixels as noisy pixels, an edge retrieval technique based on pixel-wise MAD is de¯ned. This scheme retrieves the pixels which are wrongly classi¯ed as noise. The algorithm gives high PSNR values as well as very good detail preservation

    AO-Based High Resolution Image Post-Processing

    Get PDF
    corecore