3,902 research outputs found

    Algorithms for the Calibration and Correction of Texel Images Using Inertial Measurement Updates

    Get PDF
    A 3D terrain map can be developed to survey the earthā€™s surface and provide scientists with a method of accurately modeling terrain. Some of the applications include agricultural surveys, disaster management, and object classification. In order to develop a 3D terrain map, a sensor must capture all of the data to create the map. This 3D mapping tool can be made by combining a sensor that take samples of points on the earthā€™s surface and combines that with a digital camera that takes an image and lays it across those samples of the earth. In order to take data over a large area, the entire system is flown on a small drone and must be small enough to allow the drone to fly for several minutes. While the drone is flying, a GPS sensor tracks the systemā€™s location and orientation while taking data so they can be correlated with the 3D terrain map. Utah State University has developed a sensor for this application, called a texel camera, which uses laser measurements, digital images, and a GPS system to develop 3D terrain maps. The texel camera includes methods for correcting the terrain maps using the physics of the sensors and the motion of the drone during flight

    LiveCap: Real-time Human Performance Capture from Monocular Video

    Full text link
    We present the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of entire humans in general everyday clothing from just a single RGB video. We propose a novel two-stage analysis-by-synthesis optimization whose formulation and implementation are designed for high performance. In the first stage, a skinned template model is jointly fitted to background subtracted input video, 2D and 3D skeleton joint positions found using a deep neural network, and a set of sparse facial landmark detections. In the second stage, dense non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable algorithm for non-rigid tracking using dense photometric and silhouette constraints. Our novel energy formulation leverages automatically identified material regions on the template to model the differing non-rigid deformation behavior of skin and apparel. The two resulting non-linear optimization problems per-frame are solved with specially-tailored data-parallel Gauss-Newton solvers. In order to achieve real-time performance of over 25Hz, we design a pipelined parallel architecture using the CPU and two commodity GPUs. Our method is the first real-time monocular approach for full-body performance capture. Our method yields comparable accuracy with off-line performance capture techniques, while being orders of magnitude faster

    Development of Force-Space Navigation for Surgical Robotics

    Get PDF
    Surgical robotics have been used for many years in orthopaedic procedures in the hip and knee. Robots tend to offer high accuracy and repeatability but add increased cost, complexity, time, and workflow disruption. This work outlines the design and development of a surgical robot that navigates using force feedback. Flexible components tether the patient to the robot and reaction loads are measured allowing the robot to ā€œfeelā€ its way around the pre-operative plan. Differences calculated between measured and desired loads are converted to Cartesian corrections that the robot used to navigate. The robot was tested first using simple square paths to test accuracy, repeatability and functionality. A pre-operative plan was established for implantation of the surgical system and allowed the robot to be tested doing a complex glenoid implant path. Finally, a study was performed and compared the robotā€™s surgical method to current surgical techniques of a trained surgical fellow on shoulder analogs. Based on this study, the robot performed as well as or better than the surgeon in almost every measurement parameter with less than 1 mm of implant placement error in many measurement metrics and less than 2Ā° of implant orientation error in each angular measurement

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    No full text
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    Get PDF
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Bird wings act as a suspension system that rejects gusts

    Get PDF
    Musculoskeletal systems cope with many environmental perturbations without neurological control. These passive preflex responses aid animals to move swiftly through complex terrain. Whether preflexes play a substantial role in animal flight is uncertain. We investigated how birds cope with gusty environments and found that their wings can act as a suspension system, reducing the effects of vertical gusts by elevating rapidly about the shoulder. This preflex mechanism rejected the gust impulse through inertial effects, diminishing the predicted impulse to the torso and head by 32% over the first 80 ms, before aerodynamic mechanisms took effect. For each wing, the centre of aerodynamic loading aligns with the centre of percussion, consistent with enhancing passive inertial gust rejection. The reduced motion of the torso in demanding conditions simplifies crucial tasks, such as landing, prey capture and visual tracking. Implementing a similar preflex mechanism in future small-scale aircraft will help to mitigate the effects of gusts and turbulence without added computational burden

    Mathematical modeling of pipeline features for robotic inspection

    Get PDF
    Underground pipeline systems play an indispensable role in transporting liquids in both developed and developing countries. The associated social and economic cost to repair a pipe upon abrupt failure is often unacceptable. Regular inspection is a preventative action that aims to monitor pipe conditions, catch abnormalities and reduce the chance of undesirable surprises. Robots with CCTV video cameras have been used for decades to inspect pipelines, yielding only qualitative information. It is becoming necessary and preferable for municipalities, project managers and engineers to also quantify the 3-D geometry of underground pipe networks. Existing robots equipped specialized hardware and software algorithms are capable of scanning the interior geometry of pipelines. Improvement in the 3-D models created from the collected data is a prerequisite for true, quantitative assessment of underground pipelines to take hold. Many issues regarding pipeline scanning and geometry modeling remain unaddressed or unsolved. The ultimate goal of this research is to target several prominent topics related to the robotic inspection and parametric modeling of pipe geometry, filling gaps in the literature needed for more quantitative pipeline assessment. First, parametric models of a circular cylindrical pipe undergoing deformation are developed. Different shape patterns that develop for typical pipe deformation pathways can be mathematically expressed using a single parameter. This technique offers convenience in generating or fitting 3-D models of pipes whose cross sections vary along the pipe length, where cross sections can consist of combinations of continuous and discontinuous circular and/or elliptical arcs. The parametric model is applied to the ASTM F1216 pipe liner design standard to improve the estimation of pipe ovality. Second, the impact of robot length, wheel span and wheel radius on the offset between the pipe origin and the origin of the robotic measurement hardware is quantified; this is important because the interpretation of data collected from camera, radar systems and ultrasonic sensors depends on the location of the hardware inside the pipe. Geometry distortions resulting from the passage of a robot through a pipe bend are simulated to demonstrate errors that can arise in cross sectional pipe measurements. Third, an algorithm is proposed to compute the pitch, yaw and roll of a robot as well as the major and minor axis of a pipe based on laser ring measurements taken from a single end of the robot. An enhanced version of an existing double-ended measurement algorithm is presented to reduce error when pitch, yaw and roll are large. Fourth, the relationship between geometry measurement and image processing is explored. A template-guided lateral detection paradigm using homogeneous geometric transformations and the Discrete Fourier Transform is proposed and evaluated according to error arising from lateral size, camera position and camera orientation. Relatively large laterals resembling an eclipse are easier to detect than small ones. Fifth, a new parametric model of the shape assumed by a flexible pipe liner encased in an elliptical host pipe is presented. This model overcomes deficiencies in existing models by correctly accounting for continuity in the slope and curvature of the liner profile

    Pose Invariant Gait Analysis And Reconstruction

    Get PDF
    One of the unique advantages of human gait is that it can be perceived from a distance. A varied range of research has been undertaken within the field of gait recognition. However, in almost all circumstances subjects have been constrained to walk fronto-parallel to the camera with a single walking speed. In this thesis we show that gait has sufficient properties that allows us to exploit the structure of articulated leg motion within single view sequences, in order to remove the unknown subject pose and reconstruct the underlying gait signature, with no prior knowledge of the camera calibration. Articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The variation of motion out of this plane is subtle and negligible in comparison to this major plane of motion. Subsequently, we can model human motion by employing a cardboard person assumption. A subject's body and leg segments may be represented by repeating spatio-temporal motion patterns within a set of bilaterally symmetric limb planes. The static features of gait are defined as quantities that remain invariant over the full range of walking motions. In total, we have identified nine static features of articulated leg motion, corresponding to the fronto-parallel view of gait, that remain invariant to the differences in the mode of subject motion. These features are hypothetically unique to each individual, thus can be used as suitable parameters for biometric identification. We develop a stratified approach to linear trajectory gait reconstruction that uses the rigid bone lengths of planar articulated leg motion in order to reconstruct the fronto-parallel view of gait. Furthermore, subject motion commonly occurs within a fixed ground plane and is imaged by a static camera. In general, people tend to walk in straight lines with constant velocity. Imaged gait can then be split piecewise into natural segments of linear motion. If two or more sufficiently different imaged trajectories are available then the calibration of the camera can be determined. Subsequently, the total pattern of gait motion can be globally parameterised for all subjects within an image sequence. We present the details of a sparse method that computes the maximum likelihood estimate of this set of parameters, then conclude with a reconstruction error analysis corresponding to an example image sequence of subject motion

    Accurate location of tumor in head and neck cancer radiotherapy treatment with respect to machine isocentre

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Radiation Therapy has been one of the most common techniques to treat various types of cancers, in particular is Head and Neck Cancer (HNC) which accounts for three percent of all cancers in the United States. During the treatment procedure, the patient is immobilized using immobilization devices such as the full head face mask, bite blocks, stereotactic frame, etc. to get accurate location of tumor. The disadvantage of these devices is that they are very uncomfortable to the patient especially people suffering from Post-Traumatic Stress Disorder (PTSD) and claustrophobia who cannot wear any confined masked system such as the full head mask or bite block during the treatment procedure. To mitigate this problem, there has been a lot of research in modifying such immobilizing devices without neglecting the accurate location of tumor. To this end, the research presented in this thesis focuses on developing a mask less system with accurately locating the position of tumor using the technique of coordinate transformation at the same time fulfilling the three important characteristics: ā€¢ Comfort ā€¢ Accuracy ā€¢ Low price Such a system is comfortable to the patient because no confining mask system is used and we choose minimal contact points on the patient for fixing the patient. Traditionally, such type of cancer treatment is carried out in two stages: Diagnosis stage, which identifies the location of the tumor and the external markers and the Treatment stage where the tumor is treated with immobilization device being common in both the stages. In the new system, the immobilization devices vary at the two stages. The head position is monitored by using pressure sensor assembly where spring and pressure sensor setup detects the amount and direction of head deviation. We also prepare a customized 3D printed nose bridge part for extra referencing in the treatment room. Also, it is important that we use material for our immobilization devices which does not contain any metal and MRI compatible. Once the patient lies down on the treatment couch and is immobilized using the immobilization devices, then tumor location is calculated using the theory of coordinate transformation and transformation matrix in the Diagnosis and Treatment Stage. To validate the system, simulation of immobilization devices used in the new design was carried out using ANSYS Workbench 15.0 and LS-Dyna softwareā€™s Explicit Dynamics method. The simulation for the head-fixing device showed a deflection of Ā±0.1974 mm with respect to machine isocenter with a load of 60 N, which is lower than the customer requirement of Ā±3 mm with respect to machine isocenter of head deviation. The material used for the external markers for patient positioning was selected to be polyetheretherketone (PEEK) which is a radiolucent and widely used MRI compatible material. The system also takes into consideration the effect of weight loss, which is one of the drawbacks of the current systems. Although still in the development stage, this mask less system holds to be the next new variety of immobilization devices that are comfortable to the patient and less expensive to be implemented in future cancer treatment practices
    • ā€¦
    corecore