267 research outputs found

    Dorsal and ventral attention systems underlie social and symbolic cueing

    Get PDF
    none3siEye gaze is a powerful cue for orienting attention in space. Studies examining whether gaze and symbolic cues recruit the same neural mechanisms have found mixed results. We tested whether there is a specialized attentional mechanism for social cues. We separately measured BOLD activity during orienting and reorienting attention following predictive gaze and symbolic cues. Results showed that gaze and symbolic cues exerted their influence through the same neural networks but also produced some differential modulations. Dorsal frontoparietal regions in left intraparietal sulcus (IPS) and bilateral MT+/lateral occipital cortex only showed orienting effects for symbolic cues, whereas right posterior IPS showed larger validity effects following gaze cues. Both exceptions may reflect the greater automaticity of gaze cues: Symbolic orienting may require more effort, while disengaging attention during reorienting may be more difficult following gaze cues. Face-selective regions, identified with a face localizer, showed selective activations for gaze cues reflecting sensory processing but no attentional modulations. Therefore, no evidence was found linking face-selective regions to a hypothetical, specialized mechanism for orienting attention to gaze cues. However, a functional connectivity analysis showed greater connectivity between face-selective regions and right posterior IPS, posterior STS, and inferior frontal gyrus during gaze cueing, consistent with proposals that face-selective regions may send gaze signals to parts of the dorsal and ventral frontoparietal attention networks. Finally, although the default-mode network is thought to be involved in social cognition, this role does not extend to gaze orienting as these regions were more deactivated following gaze cues and showed less functional connectivity with face-selective regions during gaze cues.mixedCallejas, Alicia; Shulman, Gordon L.; Corbetta, MaurizioCallejas, Alicia; Shulman, Gordon L.; Corbetta, Maurizi

    Stimulus-driven reorienting in the ventral frontoparietal attention network: the role of emotional content

    Get PDF
    Activity in the human temporoparietal junction (TPJ) and inferior frontal gyrus (IFG) is hypothesized to underlie stimulus-driven, or “bottom-up” attention reorienting. Demanding tasks require focused attention, and as task difficulty increases, activity suppression in the ventral network correlates positively with task performance, an effect thought to reflect the gating of irrelevant cues. However, activation in these structures is elicited by a range of stimulus features and task demands that vary across multiple characteristics, complicating the interpretation of the functional role of this pathway. Consideration of several current studies suggests that, in addition to task difficulty, the motivational relevance or emotional intensity of distractor stimuli may supersede ongoing task priority, and evoke ventral network activation. Support for this possibility is offered from a review of recent reports, and the import of this perspective for models of attention reorienting is discussed

    Automatic visuospatial attention shifts: Perceptual correlates, interventions and oscillatory signatures

    Get PDF
    Our visual perception is shaped by both external and internal factors, which continuously compete for limited neural resources. Salient external (exogenous) events capture our attention automatically, whereas internal (endogenous) attention can be directed towards sensory events according to our current behavioural goals. Advances in neuroimaging and brain stimulation have allowed us to begin to map the underlying functional neural architecture mediating both exogenously driven and endogenously controlled visual attention, including electrophysiological techniques such as electroencephalography and magnetoencephalography (EEG/MEG). However, while the neural EEG/MEG correlates of endogenously controlled attention have been investigated in much detail, the neural EEG/MEG correlates of exogenously driven attention are substantially less well understood. One reason for this is that exogenously driven effects are difficult to isolate from the influence of endogenous control processes. In a series of three experiments, I sought to: 1) Study how the perceptual outcomes of both endogenously and exogenously driven attention can be effectively dissociated and investigated. 2) Provide a better understanding of the functional architecture of attention control in regards to its underlying neural substrates and oscillatory signatures, particularly when exogenously driven. To this end, I employed a visuospatial attention paradigm which, by design, behaviourally dissociates exogenous from endogenously driven effects (experiment 1). Furthermore, by utilizing the same behavioural paradigm in combination with neuronavigated MRI-based transcranial magnetic stimulation (TMS) over two key attentional network nodes (i.e., the right intraprarietal sulcus and right temporo-parietal junction), I probed the extent to which the neural substrates of endogenous vs. exogenous orienting are overlapping or can be dissociated (experiment 2). Lastly, I used electroencephalography (EEG) to investigate the oscillatory signatures underlying attention in a task which is typically employed to study exogenous orienting and which putatively triggers exogenous attention in isolation (experiment 3). The results revealed that while exogenous attentional processes can be behaviourally dissociated from endogenous attention (experiment 1), the neural substrates of exogenous attention appear to cover a wide network of attention areas. This includes nodes in both the right ventral attention network (i.e., right temporo-parietal junction) but also the right dorsal network (i.e., the right intraparietal sulcus), which has predominantly been associated with endogenous attention control (experiment 2). Interestingly, even in tasks that have been utilized to test exogenous attentional effects in isolation, endogenous control processes, as indexed by increased mid-frontal theta-band activity, can heavily influence the behavioural outcome (experiment 3). Based on these results, I conclude that there appears to be strong interplay between endogenous control and exogenously driven attention processes. These findings highlight that in order to better understand the functional architecture of (purely) exogenously driven effects, we need to effectively account for the potential influence of endogenous control. One approach to achieve this is by manipulating both types of attention simultaneously instead of in separation, as illustrated in the present work

    Human cortical activity evoked by contextual processing in attentional orienting

    Get PDF
    The ability to assess another person’s direction of attention is paramount in social communication, many studies have reported a similar pattern between gaze and arrow cues in attention orienting. Neuroimaging research has also demonstrated no qualitative differences in attention to gaze and arrow cues. However, these studies were implemented under simple experiment conditions. Researchers have highlighted the importance of contextual processing (i.e., the semantic congruence between cue and target) in attentional orienting, showing that attentional orienting by social gaze or arrow cues could be modulated through contextual processing. Here, we examine the neural activity of attentional orienting by gaze and arrow cues in response to contextual processing using functional magnetic resonance imaging. The results demonstrated that the influence of neural activity through contextual processing to attentional orienting occurred under invalid conditions (when the cue and target were incongruent versus congruent) in the ventral frontoparietal network, although we did not identify any differences in the neural substrates of attentional orienting in contextual processing between gaze and arrow cues. These results support behavioural data of attentional orienting modulated by contextual processing based on the neurocognitive architecture

    Impulsivity and Compulsivity in Anorexia Nervosa: Cognitive Systems Underlying Variation in Appetite Restraint from an RDoC Perspective

    Get PDF
    Contemporary nomenclature for anorexia nervosa (AN) describes the eating disorder as transdiagnostic, with overlapping facets of impulsivity and compulsivity contributing to variations in binge-purge, restrictive eating and maladaptive cognitions. It is important to understand how these facets interact, given that those diagnosed with AN often fluctuate and relapse–as opposed to maintaining a stable diagnosis—between Diagnostic and Statistical Manual version 5 (DSM-5) categories, over the life course. The National Institute of Health’s Research Domain Criteria (NIH RDoC) subscribes to the transdiagnostic view of mental disorders and provides progressive guidelines for neuroscience research. As such, using the RDoC guidelines may help to pinpoint how impulsivity and compulsivity contribute to the cognitive mechanisms underlying variations in appetite restraint in eating disorders and common psychiatric comorbidities such as anxiety and obsessive-compulsive disorder. Exploring impulsivity and compulsivity in AN from the perspective of the RDoC cognitive systems domain is aided by measures of genetic, molecular, cellular, neural, physiological, behavioural and cognitive task paradigms. Thus, from the standpoint of the RDoC measures, this chapter will describe some of the ways in which impulsivity and compulsivity contribute to the cognitive systems associated with appetite restraint in AN, with the aim of further clarifying a model of appetite restraint to improve treatment interventions

    Visual attention and action: How cueing, direct mapping, and social interactions drive orienting

    Get PDF
    Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another’s goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated
    corecore