2,578 research outputs found

    Dorsal Hand Vein Identification using Transfer Learning from AlexNet

    Get PDF
    Dorsal hand vein pattern is a highly secured biometric system that has been used in many applications due to its non-contact attributes. Prior studies focused on investigation of different deep networks for hand vein classification task using different training parameters. It is the aim of this study to propose the use of systematic fine-tuning system for identifying the best parameters value for enhanced model learning efficiency. In this study, pre-trained AlexNet was trained using Bosphorus hand vein database for identification of 100 users. The experiments were carried out using original images, and preprocessed (cropped) images for comparison. The testing accuracies of these datasets were compared following tuning of training parameters, namely training and testing split ratio, number of epochs, mini-batch size and initial learning rate. It was observed that the testing accuracy of the model trained using cropped images is higher than that using the original images. The model from preprocessed dataset shows a good testing accuracy of 96 % using a split ratio of 90:10, epoch 50, mini-batch-size of 10 and an initial learning rate of 0.0001. The performance of our trained model is more superior than many reported results in the field. In future, the performance of this classification system may be further enhanced with automatic search of parameters for improved model training efficiency

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Situation Interpretation for Knowledge- and Model Based Laparoscopic Surgery

    Get PDF
    To manage the influx of information into surgical practice, new man-machine interaction methods are necessary to prevent information overflow. This work presents an approach to automatically segment surgeries into phases and select the most appropriate pieces of information for the current situation. This way, assistance systems can adopt themselves to the needs of the surgeon and not the other way around

    An fMRI-investigation on the neural correlates of tool use in young and elderly adults

    Get PDF

    Technology applications

    Get PDF
    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety

    An integrated theory of language production and comprehension

    Get PDF
    Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal

    A tale of two lexica: Investigating computational pressures on word representation with neural networks

    Get PDF
    IntroductionThe notion of a single localized store of word representations has become increasingly less plausible as evidence has accumulated for the widely distributed neural representation of wordform grounded in motor, perceptual, and conceptual processes. Here, we attempt to combine machine learning methods and neurobiological frameworks to propose a computational model of brain systems potentially responsible for wordform representation. We tested the hypothesis that the functional specialization of word representation in the brain is driven partly by computational optimization. This hypothesis directly addresses the unique problem of mapping sound and articulation vs. mapping sound and meaning.ResultsWe found that artificial neural networks trained on the mapping between sound and articulation performed poorly in recognizing the mapping between sound and meaning and vice versa. Moreover, a network trained on both tasks simultaneously could not discover the features required for efficient mapping between sound and higher-level cognitive states compared to the other two models. Furthermore, these networks developed internal representations reflecting specialized task-optimized functions without explicit training.DiscussionTogether, these findings demonstrate that different task-directed representations lead to more focused responses and better performance of a machine or algorithm and, hypothetically, the brain. Thus, we imply that the functional specialization of word representation mirrors a computational optimization strategy given the nature of the tasks that the human brain faces
    • …
    corecore