8,666 research outputs found

    A multi-angle plane wave imaging approach for high frequency 2D flow visualization in small animals: simulation study in the murine arterial system

    Get PDF
    To preclinically investigate the role of hemodynamics in atherogenesis, mouse models are particularly useful due to the rapid disease development. As such, murine blood flow visualization has become an important tool, with current US systems equipped with traditional 1D flow imaging techniques, lacking spatial and/or temporal resolution to accurately resolve in-vivo flow fields. Hence, we investigated multi-angle plane wave imaging for ultrafast, 2D vector flow visualization and compared this approach with conventional pulsed Doppler in the setting of a mouse aorta with abdominal aortic aneurysm. For this purpose, we used a multiphysics model which allowed direct comparison of synthetic US images with the true flow field behind the image. In case of the abdominal aorta, we showed the mean flow estimation improved 9 % when using 2D vector Doppler compared to conventional Doppler, but still underestimated the true flow because the full spatial velocity distribution remained unknown. We also evaluated a more challenging measurement location, the mesenteric artery (aortic side branch), often assessed in a short-axis view close to the origin of the branch to avoid the smaller dimensions downstream. Even so, complex out-ofplane flow dynamics hampered a reliable flow assessment for both techniques. Hence, both cases illustrated the need for 3D vascular imaging, allowing acquisition of the full 3D spatial velocity profile

    Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique

    Get PDF
    Phase variance-based motion contrast imaging is demonstrated using a spectral domain optical coherence tomography system for the in vivo human retina. This contrast technique spatially identifies locations of motion within the retina primarily associated with vasculature. Histogram-based noise analysis of the motion contrast images was used to reduce the motion noise created by transverse eye motion. En face summation images created from the 3D motion contrast data are presented with segmentation of selected retinal layers to provide non-invasive vascular visualization comparable to currently used invasive angiographic imaging. This motion contrast technique has demonstrated the ability to visualize resolution-limited vasculature independent of vessel orientation and flow velocity

    In vivo human retinal and choroidal vasculature visualization using differential phase contrast swept source optical coherence tomography at 1060 nm

    Get PDF
    A differential phase contrast (DPC) method is validated for in vivo human retinal and choroidal vasculature visualization using high-speed swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was identified as regions of motion by creating differential phase variance (DPV) tomograms: multiple B-scans were collected of individual slices through the retina and the variance of the phase differences was calculated. DPV captured the small vessels and the meshwork of capillaries associated with the inner retina in en face images over 4 mm^2 in a normal subject. En face DPV images were capable of capturing the microvasculature and regions of motion through the inner retina and choroid

    Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography

    Get PDF
    Phase variance-based motion contrast is demonstrated using two phase analysis methods in a spectral domain optical coherence tomography system. Mobility contrast is demonstrated for an intensity matched Intralipid solution placed without flow within agarose wells. Vasculature oriented transversely to the imaging direction has been imaged for 3-4 dpf in vivo zebrafish using the phase variance contrast methods. 2D phase variance contrast images are demonstrated with imaging times only 25% higher than a Doppler flow image with comparable statistics. En face images created by integrating depth regions of 3D zebrafish intensity and phase variance contrast data demonstrate vasculature consistent with expected images

    In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography

    Get PDF
    We present in vivo volumetric images of human retinal micro-circulation using Fourier-domain optical coherence tomography (Fd-OCT) with the phase-variance based motion contrast method. Currently fundus fluorescein angiography (FA) is the standard technique in clinical settings for visualizing blood circulation of the retina. High contrast imaging of retinal vasculature is achieved by injection of a fluorescein dye into the systemic circulation. We previously reported phase-variance optical coherence tomography (pvOCT) as an alternative and non-invasive technique to image human retinal capillaries. In contrast to FA, pvOCT allows not only noninvasive visualization of a two-dimensional retinal perfusion map but also volumetric morphology of retinal microvasculature with high sensitivity. In this paper we report high-speed acquisition at 125 kHz A-scans with pvOCT to reduce motion artifacts and increase the scanning area when compared with previous reports. Two scanning schemes with different sampling densities and scanning areas are evaluated to find optimal parameters for high acquisition speed in vivo imaging. In order to evaluate this technique, we compare pvOCT capillary imaging at 3x3 mm^2 and 1.5x1.5 mm^2 with fundus FA for a normal human subject. Additionally, a volumetric view of retinal capillaries and a stitched image acquired with ten 3x3 mm^2 pvOCT sub-volumes are presented. Visualization of retinal vasculature with pvOCT has potential for diagnosis of retinal vascular diseases

    Differential intensity contrast swept source optical coherence tomography for human retinal vasculature visualization

    Get PDF
    We demonstrate an intensity-based motion sensitive method, called differential logarithmic intensity variance (DLOGIV), for 3D microvasculature imaging and foveal avascular zone (FAZ) visualization in the in vivo human retina using swept source optical coherence tomog. (SS-OCT) at 1060 nm. A motion sensitive SS-OCT system was developed operating at 50,000 A-lines/s with 5.9 μm axial resoln., and used to collect 3D images over 4 mm^2 in a normal subject eye. Multiple B-scans were acquired at each individual slice through the retina and the variance of differences of logarithmic intensities as well as the differential phase variances (DPV) was calcd. to identify regions of motion (microvasculature). En face DLOGIV image were capable of capturing the microvasculature through depth with an equal performance compared to the DPV

    Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography.

    Get PDF
    Over the past 10 years there has been intense research in the development of volumetric visualization of intracardiac flow by cardiac magnetic resonance (CMR).This volumetric time resolved technique called CMR 4D flow imaging has several advantages over standard CMR. It offers anatomical, functional and flow information in a single free-breathing, ten-minute acquisition. However, the data obtained is large and its processing requires dedicated software. We evaluated a cloud-based application package that combines volumetric data correction and visualization of CMR 4D flow data, and assessed its accuracy for the detection and grading of aortic valve regurgitation using transthoracic echocardiography as reference. Between June 2014 and January 2015, patients planned for clinical CMR were consecutively approached to undergo the supplementary CMR 4D flow acquisition. Fifty four patients(median age 39 years, 32 males) were included. Detection and grading of the aortic valve regurgitation using CMR4D flow imaging were evaluated against transthoracic echocardiography. The agreement between 4D flow CMR and transthoracic echocardiography for grading of aortic valve regurgitation was good (j = 0.73). To identify relevant,more than mild aortic valve regurgitation, CMR 4D flow imaging had a sensitivity of 100 % and specificity of 98 %. Aortic regurgitation can be well visualized, in a similar manner as transthoracic echocardiography, when using CMR 4D flow imaging

    Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography

    Get PDF
    We formulate a theory to show that the statistics of OCT signal amplitude and intensity are highly dependent on the sample reflectivity strength, motion, and noise power. Our theoretical and experimental results depict the lack of speckle amplitude and intensity contrasts to differentiate regions of motion from static areas. Two logarithmic intensity-based contrasts, logarithmic intensity variance (LOGIV) and differential logarithmic intensity variance (DLOGIV), are proposed for serving as surrogate markers for motion with enhanced sensitivity. Our findings demonstrate a good agreement between the theoretical and experimental results for logarithmic intensity-based contrasts. Logarithmic intensity-based motion and speckle-based contrast methods are validated and compared for in vivo human retinal vasculature visualization using high-speed swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was identified as regions of motion by creating LOGIV and DLOGIV tomograms: multiple B-scans were collected of individual slices through the retina and the variance of logarithmic intensities and differences of logarithmic intensities were calculated. Both methods captured the small vessels and the meshwork of capillaries associated with the inner retina in en face images over 4 mm^2 in a normal subject
    corecore