143 research outputs found

    Predictor Antenna Systems: Exploiting Channel State Information for Vehicle Communications

    Get PDF
    Vehicle communication is one of the most important use cases in the fifth generation of wireless networks (5G).\ua0 The growing demand for quality of service (QoS) characterized by performance metrics, such as spectrum efficiency, peak data rate, and outage probability, is mainly limited by inaccurate prediction/estimation of channel state information (CSI) of the rapidly changing environment around moving vehicles. One way to increase the prediction horizon of CSI in order to improve the QoS is deploying predictor antennas (PAs).\ua0 A PA system consists of two sets of antennas typically mounted on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In realistic PA systems, however, the actual benefit is affected by a variety of factors, including spatial mismatch, antenna utilization, temporal correlation of scattering environment, and CSI estimation error. This thesis investigates different resource allocation schemes for the PA systems under practical constraints, with main contributions summarized as follows.First, in Paper A, we study the PA system in the presence of the so-called spatial mismatch problem, i.e., when the channel observed by the PA is not exactly the same as the one experienced by the RA. We derive closed-form expressions for the throughput-optimized rate adaptation, and evaluate the system performance in various temporally-correlated conditions for the scattering environment. Our results indicate that PA-assisted adaptive rate adaptation leads to a considerable performance improvement, compared to the cases with no rate adaptation. Then, to simplify e.g., various integral calculations as well as different operations such as parameter optimization, in Paper B, we propose a semi-linear approximation of the Marcum Q-function, and apply the proposed approximation to the evaluation of the PA system. We also perform deep analysis of the effect of various parameters such as antenna separation as well as CSI estimation error. As we show, our proposed approximation scheme enables us to analyze PA systems with high accuracy.The second part of the thesis focuses on improving the spectral efficiency of the PA system by involving the PA into data transmission. In Paper C, we analyze the outage-limited performance of PA systems using hybrid automatic repeat request (HARQ). With our proposed approach, the PA is used not only for improving the CSI in the retransmissions to the RA, but also for data transmission in the initial round.\ua0 As we show in the analytical and the simulation results, the combination of PA and HARQ protocols makes it possible to improve the spectral efficiency and adapt transmission parameters to mitigate the effect of spatial mismatch

    Predictor Antenna Systems: Exploiting Channel State Information for Vehicle Communications

    Get PDF
    Vehicle communication is one of the most important use cases in the fifth generation of wireless networks (5G). The growing demand for quality of service (QoS) characterized by performance metrics, such as spectrum efficiency, peak data rate, and outage probability, is mainly limited by inaccurate prediction/estimation of channel state information (CSI) of the rapidly changing environment around moving vehicles. One way to increase the prediction horizon of CSI in order to improve the QoS is deploying predictor antennas (PAs). A PA system consists of two sets of antennas typically mounted on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In realistic PA systems, however, the actual benefit is affected by a variety of factors, including spatial mismatch, antenna utilization, temporal correlation of scattering environment, and CSI estimation error. This thesis investigates different resource allocation schemes for the PA systems under practical constraints.Comment: Licentiate thesis, Chalmers University of Technolog

    Towards Context Information-based High-Performing Connectivity in Internet of Vehicle Communications

    Get PDF
    Internet-of-vehicles (IoV) is one of the most important use cases in the fifth generation (5G) of wireless networks and beyond. Here, IoV communications refer to two types of scenarios: serving the in-vehicle users with moving relays (MRs); and supporting vehicle-to-everything (V2X) communications for, e.g., connected vehicle functionalities. Both of them can be achieved by transceivers on top of vehicles with growing demand for quality of service (QoS), such as spectrum efficiency, peak data rate, and coverage probability. However, the performance of MRs and V2X is limited by challenges such as the inaccurate prediction/estimation of the channel state information (CSI), beamforming mismatch, and blockages. Knowing the environment and utilizing such context information to assist communication could alleviate these issues. This thesis investigates various context information-based performance enhancement schemes for IoV networks, with main contributions listed as follows.In order to mitigate the channel aging issue, i.e., the CSI becomes inaccurate soon at high speeds, the first part of the thesis focuses on one way to increase the prediction horizon of CSI in MRs: predictor antennas (PAs). A PA system is designed as a system with two sets of antennas on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In PA systems, however, the benefit is affected by a variety of factors. For example, 1) spatial mismatch between the point where the PA estimates the channel and the point where the RA reaches several time slots later, 2) antenna utilization efficiency of the PA, 3) temporal evolution, and 4) estimation error of the PA-base station (BS) channel. First, in Paper A, we study the PA system in the presence of the spatial mismatch problem, and propose an analytical channel model which is used for rate adaptation. In paper B, we propose different approximation schemes for the analytical investigation of PA systems, and study the effect of different parameters on the network performance. Then, involving PAs into data transmission, Paper C and Paper D analyze the outage- and the delay-limited performance of PA systems using hybrid automatic repeat request (HARQ), respectively. As we show in the analytical and the simulation results in Papers C-D, the combination of PA and HARQ protocols makes it possible to improve spectral efficiency and adapt the transmission parameters to mitigate the effect of spatial mismatch. Finally, a review of PA studies in the literature, the challenges and potentials of PA as well as some to-be-solved issues are presented in Paper E.The second part of the thesis focuses on using advanced technologies to further improve the MR/IoV performance. In Paper F, a cooperative PA scheme in IoV networks is proposed to mitigate both the channel aging effect and blockage sensitivity in millimeter-wave channels by collaborative vehicles and BS handover. Then, in Paper G, we study the potentials and challenges of dynamic blockage pre-avoidance in IoV networks

    Beam-forming and Power Control in flexible Spectrum USage for LTE Adavnced System

    Get PDF

    Feedback Mechanisms for Centralized and Distributed Mobile Systems

    Get PDF
    The wireless communication market is expected to witness considerable growth in the immediate future due to increasing smart device usage to access real-time data. Mobile devices become the predominant method of Internet access via cellular networks (4G/5G) and the onset of virtual reality (VR), ushering in the wide deployment of multiple bands, ranging from TVWhite Spaces to cellular/WiFi bands and on to mmWave. Multi-antenna techniques have been considered to be promising approaches in telecommunication to optimize the utilization of radio spectrum and minimize the cost of system construction. The performance of multiple antenna technology depends on the utilization of radio propagation properties and feedback of such information in a timely manner. However, when a signal is transmitted, it is usually dispersed over time coming over different paths of different lengths due to reflections from obstacles or affected by Doppler shift in mobile environments. This motivates the design of novel feedback mechanisms that improve the performance of multi-antenna systems. Accurate channel state information (CSI) is essential to increasing throughput in multiinput, multi-output (MIMO) systems with digital beamforming. Channel-state information for the operation of MIMO schemes (such as transmit diversity or spatial multiplexing) can be acquired by feedback of CSI reports in the downlink direction, or inferred from uplink measurements assuming perfect channel reciprocity (CR). However, most works make the assumption that channels are perfectly reciprocal. This assumption is often incorrect in practice due to poor channel estimation and imperfect channel feedback. Instead, experiments have demonstrated that channel reciprocity can be easily broken by multiple factors. Specifically, channel reciprocity error (CRE) introduced by transmitter-receiver imbalance have been widely studied by both simulations and experiments, and the impact of mobility and estimation error have been fully investigated in this thesis. In particular, unmanned aerial vehicles (UAVs) have asymmetric behavior when communicating with one another and to the ground, due to differences in altitude that frequently occur. Feedback mechanisms are also affected by channel differences caused by the user’s body. While there has been work to specifically quantify the losses in signal reception, there has been little work on how these channel differences affect feedback mechanisms. In this dissertation, we perform system-level simulations, implement design with a software defined radio platform, conduct in-field experiments for various wireless communication systems to analyze different channel feedback mechanisms. To explore the feedback mechanism, we then explore two specific real world scenarios, including UAV-based beamforming communications, and user-induced feedback systems

    Multi-user MIMO wireless communications

    Get PDF

    Multi-user MIMO wireless communications

    Get PDF
    Mehrantennensysteme sind auf Grund der erhöhten Bandbreiteneffizienz und Leistung eine Schlüsselkomponente von Mobilfunksystemen der Zukunft. Diese ermöglichen das gleichzeitige Senden von mehreren, räumlich getrennten Datenströmen zu verschiedenen Nutzern. Die zentrale Fragestellung in der Praxis ist, ob der ursprünglich vorausgesagte Kapazitätsgewinn in realistischen Szenarios erreicht wird und welche spezifischen Gewinne durch zusätzliche Antennen und das Ausnutzen von Kanalkenntnis am Sender und Empfänger erzielt werden, was andererseits einen Zuwachs an Overhead oder nötiger Rechenleistung bedeutet. In dieser Arbeit werden neue lineare und nicht-lineare MU-MIMO Precoding- Verfahren vorgestellt. Der verfolgte Ansatz zur Bestimmung der Precoding- Matrizen ist allgemein anwendbar und die entstandenen Algorithmen können zur Optimierung von verschiedenen Kriterien mit beliebig vielen Antennen an der Mobilstation eingesetzt werden. Das wurde durch die Berechnung der Precoding- Matrix in zwei Schritten erreicht. Im ersten Schritt wird die Überschneidung der Zeilenräume minimiert, die durch die effektiven Kanalmatrizen verschiedener Nutzer aufgespannt werden. Basierend auf mehreren parallelen Einzelnutzer-MIMO- Kanälen wird im zweiten Schritt die Systemperformanz bezüglich bestimmter Kriterien optimiert. Aus der gängigen Literatur ist bereits bekannt, dass für Nutzer mit nur einer Antenne das MMSE Kriterium beim precoding optimal aber nicht bei Nutzern mit mehreren Antennen. Deshalb werden in dieser Arbeit zwei neue Mehrnutzer MIMO Strategien vorgestellt, die vom MSE Kriterium abgeleitet sind, nämlich sukzessives MMSE und RBD. Bei der sukzessiven Verarbeitung mit einer entsprechenden Anpassung der Sendeleistungsverteilung kann die volle Diversität des Systems ausgeschöpft werden. Die Kapazität nähert sich dabei der maximalen Summenrate des Systems an. Bei gemeinsamer Verarbeitung der MIMO Kanäle wird unabhängig vom Grad der Mehrnutzerinterferenz die maximale Diversität erreicht. Die genannten Techniken setzen entweder eine aktuelle oder eine über einen längeren Zeitraum gemittelte Kanalkenntnis voraus. Aus diesem Grund müssen die Auswirkungen von Kanal-Schätzfehlern und Einflüsse des Transceiver Front-Ends auf die Verfahren näher untersucht werden. Für eine weitergehende Abschätzung der Mehrantennensysteme muss die Performanz des Gesamtsystems untersucht werden, da viele Einflüsse auf die räumliche Signalverarbeitung bei Betrachtung eines einzelnen Links nicht erkennbar sind. Es wurde gezeigt, dass mit MIMO Precoding Strategien ein Vielfaches der Datenrate eines Systems mit nur einer Antenne erzielt werden kann, während der Overhead durch Pilotsymbole und Steuersignale nur geringfügig zunimmt.Multiple-input, multiple-output (MIMO) systems are a key component of future wireless communication systems, because of their promising improvement in terms of performance and bandwidth efficiency. An important research topic is the study of multi-user (MU) MIMO systems. Such systems have the potential to combine the high throughput achievable with MIMO processing with the benefits of space division multiple access (SDMA). The main question from a practical standpoint is whether the initially predicted capacity gains can be obtained in more realistic scenarios and what specific gains result from adding more antennas and overhead or computational power to obtain channel state information (CSI) at the transceivers. In this thesis we introduce new linear and non-linear MU MIMO processing techniques. The approach used for the design of the precoding matrix is general and the resulting algorithms can address several optimization criteria with an arbitrary number of antennas at the user terminals (UTs). This is achieved by designing the precoding matrices in two steps. In the first step we minimize the overlap of the row spaces spanned by the effective channel matrices of different users. In the next step, we optimize the system performance with respect to the specific optimization criterion assuming a set of parallel single-user MIMO channels. As it was previously reported in the literature, minimum mean-squared-error (MMSE) processing is optimum for single-antenna UTs. However, MMSE suffers from a performance loss when users are equipped with more than one antenna. The two MU MIMO processing techniques that result from the two different MSE criteria that are proposed in this thesis are successive MMSE and regularized block diagonalization. By iterating the closed form solution with appropriate power loading we are able to extract the full diversity in the system and empirically approach the maximum sum-rate capacity in case of high multi-user interference. Joint processing of MIMO channels yields maximum diversity regardless of the level of multi-user interference. As these techniques rely on the fact that there is either instantaneous or long- term CSI available at the base station to perform precoding and decoding, it was very important to investigate the influence of the transceiver front-end imperfections and channel estimation errors on their performance. For a comprehensive assessment of multi-antenna techniques, it is mandatory to consider the performance at system level, since many effects of spatial processing are not tractable at the link level. System level investigations have shown that MU MIMO precoding techniques provide several times higher data rates than single-input single-output systems with only slightly increased pilot and control overhead

    Multi-carrier transmission techniques toward flexible and efficient wireless communication systems

    Get PDF
    制度:新 ; 文部省報告番号:甲2562号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2008/3/15 ; 早大学位記番号:新470
    corecore