51 research outputs found

    Spectral analyses of the dual polarization Doppler weather radar data.

    Get PDF
    Echoes in clear air from biological scatterers mixed within the resolution volumes over a large region are presented. These echoes were observed with the polarimetric prototype of the forthcoming WSR-88D weather radar. The study case occurred in the evening of September 7, 2004, at the beginning of the bird migrating season. Novel polarimetric spectral analyses are used for distinguishing signatures of birds and insects in multimodal spectra. These biological scatterers were present at the same time in the radar resolution volumes over a large area. Spectral techniques for (1) data censoring, (2) wind retrieval and (3) estimation of intrinsic values/functions of polarimetric variables for different types of scatterers are presented. The technique for data censoring in the frequency domain allows detection of weak signals. Censoring is performed on the level of spectral densities, allowing exposure of contributions to the spectrum from multiple types of scatterers. The spectral techniques for wind retrieval allow simultaneous estimation of wind from the data that are severely contaminated by migrating birds, and assessment of bird migration parameters. The intrinsic polarimetric signatures associated with the variety of scatterers can be evaluated using presented methodology. Algorithms for echo classification can be built on these. The possibilities of spectral processing using parametric estimation techniques are explored for resolving contributions to the Doppler spectrum from the three types of scatterers: passive wind tracers, actively flying insects and birds. A combination of parametric and non-parametric polarimetric spectral analyses is used to estimate the small bias introduced to the wind velocity by actively flying insects

    Investigation of non-cooperative target recognition of small and slow moving air targets in modern air defence surveillance radar

    Get PDF
    This thesis covers research in the field of non-cooperative target recognition given the limitations of modern air defence surveillance radars. The potential presence of low observable manned or unmanned targets within the vast surveillance volume demand highly sensitive systems. This may again introduce unwanted detections of single birds of comparable radar cross section, previously avoided by use of wide clutter rejection filters and sensitivity time control. The demand for methods effectively separating between birds and slow moving manmade targets is evident. The research questions addressed are connected to identification of characteristic features of birds and manmade targets of comparable size. Ultimately the goal has been to find methods that can utilize such features to effectively distinguish between the classes. In contrast to the vast majority of non-cooperative target recognition publications, this thesis includes non-rigid targets covering a range of dielectric properties and targets falling in the resonant and Rayleigh scattering regions. These factors combined with insufficient spatial resolution for classification require alternative approaches such as utilization of periodic RCS modulation, micro-Doppler- and polarimetric signatures. Signatures of birds and UAVs are investigated through electromagnetic prediction and radar measurements. A flexible and fully polarimetric radar capable of simultaneous operation in both L- and S-band is developed for collection of relevant signatures. Inspired by the use of polarimetric radar for classification of precipitation covered in the weather radar literature, focus has been on using similar methods to recognize signatures of rotors, propellers and bird wings. Novel micro-Doppler signatures combining polarimetric information from this sensor is found to hold information about the orientation of such target parts. This information combined with several other features is evaluated for classification. The benefit from involving polarimetric measurements is especially investigated, and is found to be highly valuable when information provided by other methods is limited

    A polarimetric Doppler radar time‐series simulator for biological applications

    Get PDF
    The high mobility of airborne organisms makes them inherently difficult to study, motivating the use of radars and radar networks as biological surveillance tools. While the utility of radar for ecological studies has been demonstrated, a number of challenges remain in expanding and optimizing their use for surveillance of birds, bats and insects. To explore these topics, a Lagrangian simulation scheme has been developed to synthesize realistic, polarimetric, pulsed Doppler radar baseband signals from modelled flocks of biological point scatterers. This radar simulation algorithm is described, and an application is presented using an agent-based model of the nocturnal emergence of a cave-dwelling colony of Brazilian free-tailed bats (Tadarida brasiliensis). Dualpolarization radar signals for an S-band weather surveillance radar are synthesized and used to develop a new extension of the spectral velocity azimuth display for polarimetric roost-ring signature analysis, demonstrating one capability of this simulation scheme. While these developments will have direct benefits for radar engineers and meteorologists, continuing investment in radar methods such as these will have cascading effects toward improving ecological models and developing new observational techniques for monitoring aerial wildlife

    Radar, Insect Population Ecology, and Pest Management

    Get PDF
    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives

    The development of an unsupervised hierarchical clustering analysis of dual-polarization weather surveillance radar observations to assess nocturnal insect abundance and diversity

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordContemporary analyses of insect population trends are based, for the most part, on a large body of heterogeneous and short-term datasets of diurnal species that are representative of limited spatial domains. This makes monitoring changes in insect biomass and biodiversity difficult. What is needed is a method for monitoring that provides a consistent, high-resolution picture of insect populations through time over large areas during day and night. Here, we explore the use of X-band weather surveillance radar (WSR) for the study of local insect populations using a high-quality, multi-week time series of nocturnal moth light trapping data. Specifically, we test the hypotheses that (i) unsupervised data-driven classification algorithms can differentiate meteorological and biological phenomena, (ii) the diversity of the classes of bioscatterers are quantitatively related to the diversity of insects as measured on the ground and (iii) insect abundance measured at ground level can be predicted quantitatively based on dual-polarization Doppler WSR variables. Adapting the quasi-vertical profile analysis method and data clustering techniques developed for the analysis of hydrometeors, we demonstrate that our bioscatterer classification algorithm successfully differentiates bioscatterers from hydrometeors over a large spatial scale and at high temporal resolutions. Furthermore, our results also show a clear relationship between biological and meteorological scatterers and a link between the abundance and diversity of radar-based bioscatterer clusters and that of nocturnal aerial insects. Thus, we demonstrate the potential utility of this approach for landscape scale monitoring of biodiversity.Natural Environment Research Council (NERC)Bill and Melinda Gates Foundatio

    Cloud and Precipitation Observed with Radar

    Get PDF
    Meteorological radar is an essential tool for research, diagnosis, and nowcasting of clouds and precipitation. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. The cloud radar at UFS Schneefernerhaus is operated since end of 2011. It has been used for a number of studies related to clouds and precipitation. In a synergistic combination with additional remote sensing instruments, a large variety of cloud and precipitation properties can be retrieved. The measurements at UFS Schneefernerhaus can be used for the evaluation of numerical weather prediction models and satellite measurements. The long-term observations allow assessing the seasonal and long-term evolution of cloud properties above the UFS in a warming climate

    Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Get PDF
    2012 Summer.Includes bibliographical references.The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi-channel digital receiver has been successfully deployed as a key component in the recently developed National Aeronautical and Space Administration (NASA) Global Precipitation Measurement (GPM) Dual-Frequency Dual-Polarization Doppler Radar (D3R). The D3R is the principal ground validation instrument for the precipitation measurements of the Dual Precipitation Radar (DPR) onboard the GPM Core Observatory satellite scheduled for launch in 2014. The D3R system employs two broadly separated frequencies at Ku- and Ka-bands that together make measurements for precipitation types which need higher sensitivity such as light rain, drizzle and snow. This research describes unique design space to configure the digital receiver for D3R at several processing levels. At length, this research presents analysis and results obtained by employing the multi-carrier waveforms for D3R during the 2012 GPM Cold-Season Precipitation Experiment (GCPEx) campaign in Canada

    Applied Radar Meteorology

    Get PDF
    This is a textbook focused on operational and other aspects of applied radar meteorology. Its primary purpose is to serve as a text for upper-level undergraduates and graduate students studying meteorology, who wish to work as professional operational meteorologists in the U.S. National Weather Service or the Air Force Weather Agency. In addition to a detailed description of operational weather radar systems operating in the United States, this text also provides a brief historical overview of the subject as well as a basic review of the physics of electromagnetic radiation and other theoretical aspects of weather radar. The last two chapters discuss a sample of other radar systems (such as the Doppler on Wheels and the Canadian and European operational networks), and future directions of weather radar, including its use as an input for high-resolution, rapid refresh computer models

    Computational Electromagnetics Applied to Scattering Observed by Polarimetric Weather Radar

    Get PDF
    The primary topics of this dissertation are issues existing in the current ensemble scattering procedures. These procedures are failing to quantitatively reproduce polarimetric signatures from resolution volumes filled with ensembles of resonant size precipitation, biota, and anthropogenic scatterers. Sources of these failures are traced to the constraints on the topology that is admissible to the different modeling procedures. The dissertation evaluates in a systematic manner the current modeling procedures focusing on limitation sources and their effects on the overall process of polarimetric variable simulation. It re-evaluates limitations of the widely used T-Matrix approach and discusses sources of instability. Based on the identified limitations, a novel computational electromagnetics (CEM) approach to scatterer modeling and polarimetric variable calculation is introduced to mitigate the current limitations. Detailed overview of the process as well as guidance on applying the CEM to the polarimetric variable calculation is presented. This is the first systematic exploration of a specific CEM solver to modeling of polarimetric radar signatures from precipitation and biota. Finally, to demonstrate meteorological application the CEM approach is evaluated by comparison with some polarimetric radar observations of hail. Of main significance is modeling of large and giant hail having surface protuberances, or rough, irregular shape. Additionally, radar observations of biota and radar cross section (RCS) measurements are considered for aeroecology applications. As an example, the precise size and shape model of Brazilian Free-tailed bat (Tadarida brasiliensis) is created and compared to the RCS measurements, as well as to radar observations of bat emergence in Texas plains
    corecore