181 research outputs found

    BatMobility: Towards Flying Without Seeing for Autonomous Drones

    Full text link
    Unmanned aerial vehicles (UAVs) rely on optical sensors such as cameras and lidar for autonomous operation. However, such optical sensors are error-prone in bad lighting, inclement weather conditions including fog and smoke, and around textureless or transparent surfaces. In this paper, we ask: is it possible to fly UAVs without relying on optical sensors, i.e., can UAVs fly without seeing? We present BatMobility, a lightweight mmWave radar-only perception system for UAVs that eliminates the need for optical sensors. BatMobility enables two core functionalities for UAVs -- radio flow estimation (a novel FMCW radar-based alternative for optical flow based on surface-parallel doppler shift) and radar-based collision avoidance. We build BatMobility using commodity sensors and deploy it as a real-time system on a small off-the-shelf quadcopter running an unmodified flight controller. Our evaluation shows that BatMobility achieves comparable or better performance than commercial-grade optical sensors across a wide range of scenarios

    Behind-wall target detection using micro-doppler effects

    Get PDF
    Abstract: During the last decade technology for seeing through walls and through dense vegetation has interested many researchers. This technology offers excellent opportunities for military and police applications, though applications are not limited to the military and police; they go beyond those applications to where detecting a target behind an obstacle is needed. To be able to disclose the location and velocity of obscured targets, scientists’ resort to electromagnetic wave propagation. Thus, through-the-wall radar (TWR) is technology used to propagate electromagnetic waves towards a target through a wall. Though TWR is a promising technology, it has been reported that TWR imaging (TWRI) poses a range of ambiguities in target characterisation and detection. These ambiguities are related to the thickness and electric properties of walls. It has been reported that the mechanical and electric properties of the wall defocus the target image rendered by the radar. The defocusing problem is the phenomenon of displacing the target away from its true location when the image is rendered. Thus, the operator of the TWR will have a wrong position, not the real position of the target. Defocusing is not the only problem observed while the signal is travelling through the wall. Target classification, wall modelling and others are areas that need investigation...D.Ing. (Electrical and Electronic Engineering

    Vital Sign Monitoring in Dynamic Environment via mmWave Radar and Camera Fusion

    Full text link
    Contact-free vital sign monitoring, which uses wireless signals for recognizing human vital signs (i.e, breath and heartbeat), is an attractive solution to health and security. However, the subject's body movement and the change in actual environments can result in inaccurate frequency estimation of heartbeat and respiratory. In this paper, we propose a robust mmWave radar and camera fusion system for monitoring vital signs, which can perform consistently well in dynamic scenarios, e.g., when some people move around the subject to be tracked, or a subject waves his/her arms and marches on the spot. Three major processing modules are developed in the system, to enable robust sensing. Firstly, we utilize a camera to assist a mmWave radar to accurately localize the subjects of interest. Secondly, we exploit the calculated subject position to form transmitting and receiving beamformers, which can improve the reflected power from the targets and weaken the impact of dynamic interference. Thirdly, we propose a weighted multi-channel Variational Mode Decomposition (WMC-VMD) algorithm to separate the weak vital sign signals from the dynamic ones due to subject's body movement. Experimental results show that, the 90th{^{th}} percentile errors in respiration rate (RR) and heartbeat rate (HR) are less than 0.5 RPM (respirations per minute) and 6 BPM (beats per minute), respectively

    An analysis of a radio frequency sensor as a means to remotely sense selected surface topographies in an agriculture environment

    Get PDF
    Remote sensing is the science and art of obtaining information about an object, area or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation. The remotely sensed data can be of many forms, including variations in force distribution, acoustic wave distribution, or electromagnetic energy distribution.Information thus acquired can be used for observing,monitoring, and studying planetary surfaces and environments. Because there are many ways to acquire data about targets of interest, there are many types of remote sensors that can be used, including visible, infrared, and active and passive microwave radio frequency (RF) sensors. This research specifically addresses active RF remote sensing. When one investigates RF sensors for agriculture (Ag) applications, the investigator finds very limited production use of RF technology. The limited use stems from the fact that RF applications for Ag equipment are usually driven by automotive desires and not by Ag needs. The hypotheses of this exploratory study was to determine the signal return profile (radiated return output power) or Radar Cross Section (RCS) are within the FCC Article 47 guidelines of three surface topographies. The three surfaces are tilled soil, grass, and concrete. Additionally, to a certain extent, this study tried to identify the capability of the radio frequency sensor as a means to measure ground speed of an Ag vehicle. The purpose of this exploratory study was to provide technical data (i.e., RCS) on the three surface topographies of tilled soil, grass, and concrete. Additionally, the purpose of the study was to investigate and provide information on four radio frequency radar principles that could be used in Ag applications, and to determine which of the four radar principles provide the optimum RCS over the selected surface topographies. Based upon the analyses of data, it was concluded that the correlation between multiple faceted surface topographies (e.g., tilled soil and grasses) was more statistically significant as to true ground speed than that of a smooth surface (i.e., concrete). Further, it was concluded that the correlation or feasibility of use between radio frequency technology and agriculture applications was again statistically significant. Given the outcomes of the study, recommendations for further study were warranted and may be utilized to further define the relationship between radio frequency sensor development and agricultural applications. It was recommended that this exploratory study be replicated. In addition, other recommendations for further study were also made

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF

    MEMS based radar sensor for automotive collision avoidance

    Get PDF
    This dissertation presents the architecture of a new MEMS based 77 GHz frequency modulated continuous wave (FMCW) automotive long range radar sensor. The design, modeling, and fabrication of a novel MEMS based TE10 mode Rotman lens. MEMS based Single-pole-triple-throw (SP3T) RF switches and an inset feed type microstrip antenna array that form the core components of the newly developed radar sensor. The novel silicon based Rotman lens exploits the principle of a TE10 mode rectangular waveguide that enabled to realize the lens in silicon using conventional microfabrication technique with a cavity depth of 50 μm and a footprint area to 27 mm x 36.2 mm for 77 GHz operation. The microfabricated Rotman lens replaces the conventional microelectronics based analog or digital beamformers as used in state-of-the-art automotive long range radars to results in a smaller form-factor superior performance less complex low cost radar sensor. The developed Rotman lens has 3 beam ports, 5 array ports, 6 dummy ports and HFSS simulation exhibits better than -2 dB insertion loss and better than -20 dB return loss between the beam ports and the array ports. A MEMS based 77 GHz SP3T cantilever type RF switch with conventional ground connecting bridges (GCB) has been designed, modelled, and fabricated to sequentially switch the FMCW signal among the beam ports of the Rotman lens. A new continuous ground (CG) SP3T switch has been designed and modeled that shows a 4 dB improvement in return loss, 0.5 dB improvement in insertion loss and an isolation improvement of 3.5 dB over the conventional GCB type switch. The fabrication of the CG type switch is in progress. Both the switches have a footprint area of 500 µm x 500 μm. An inset feed type 77 GHz microstrip antenna array has been designed, modelled, and fabricated on a Duroid 5880 substrate using a laser ablation technique. The 12 mm x 35 mm footprint area antenna array consists of 5 sub-arrays with 12 microstrip patches in each of the sub-arrays. HFSS simulation result shows a gain of 18.3 dB, efficiency of 77% and half power beam width of 9°
    corecore