31,699 research outputs found

    Decision Making and the Brain: Neurologists' View

    Get PDF
    The article reflects the fact, that concepts like decision making and free will have entered the field of cognitive neuroscience towards the end of 20th century. It gives an overview of brain structures involved in decision making and the concept of free will; and presenting the results of clinical observations and new methods (functional neuroimaging, electrophysiology) it postulates possible mechanisms of these processes. We give a review of the neuroanatomy, specially discussing those parts of the brain important to the present topic, because the process of decision making is dependent on deep subcortical as well as superficial cortical structures. Dopamine has a central role in the in process of reward related behaviour and hedonism. A list of brain structures, related to dopamine action, is also given. The article especially concentrates on the Single Photon Emission Computer Tomography studies in patients with Parkinson's disease (neuroimaging), as well as to the studies concerning the Readiness Potential and Endogeneous Potential P300 (electrophysiology). In the end, we discuss the volition, whose functional anatomy overlaps with the functional anatomy of free will and decision making processes.cognitive neuroscience, brain, decision making, free will, electrophysiology, functional imaging, dopamine

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    Dopamine receptors gene expression in male rat hippocampus after administration of MDMA (Ecstasy) [La Expresión Génica de Receptores de Dopamina en el Hipocampo de Ratas Macho Después de la Administración de MDMA (Éxtasis)]

    Get PDF
    Ecstasy is one of the most popular amusing drugs among young people. Documents indicate some effects of Ecstasy on hippocampus and close relations between dopaminergic functions with reward learning. Therefore, the aim of this study was evaluation of the chronic effects of Ecstasy on memory in male Wistar rats and determination of dopamine receptors' gene expression in hippocampus. Forty adult male Wistar rats randomly distributed in five groups: Control, sham (received 1 ml/kg 0.9 saline) and three experimental groups were: Exp. 1 (2.5 mg/kg), Exp. 2 (5 mg/kg), and Exp. 3 (10 mg/kg) received MDMA intraperitoneally once every 7 days (3 times a day, 3 hours apart) for 4 weeks. Before the first injection animals trained in Shuttle Box memory and tested after the last injection. 24 hours after the final testing, brains of rats were dissected and hippocampus was removed and homogenized. After total RNA extraction and cDNA synthesis, expression of dopamine receptor genes in the hippocampus determined with Real-Time PCR. Our results showed that 2.5 and 5 mg/kg MDMA-treated groups had memory impairment. Also we found that MDMA increased the mRNA expression of dopamine receptors in hippocampus and the highest increase found in dopamine D1 receptors in the 5 mg/kg experimental group. We concluded that low doses of Ecstasy could increase Dopamine takers gene expression in hippocampus and disorder avoidance memory. But in high doses the increase in Dopamine takers gene expression was not as much as that in low doses and avoidance memory disorder was not observed. © 2015, Universidad de la Frontera. All rights reserved

    Active inference, evidence accumulation, and the urn task

    Get PDF
    Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one that is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding of information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical letter, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behavior--in this case, that they will make informed decisions. Normative decision making is then modeled using variational Bayes to minimize surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step toward understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference and may cast light on why this process is disordered in psychopathology

    The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes

    Get PDF
    Dopamine plays a key role in learning; however, its exact function in decision making and choice remains unclear. Recently, we proposed a generic model based on active (Bayesian) inference wherein dopamine encodes the precision of beliefs about optimal policies. Put simply, dopamine discharges reflect the confidence that a chosen policy will lead to desired outcomes. We designed a novel task to test this hypothesis, where subjects played a "limited offer" game in a functional magnetic resonance imaging experiment. Subjects had to decide how long to wait for a high offer before accepting a low offer, with the risk of losing everything if they waited too long. Bayesian model comparison showed that behavior strongly supported active inference, based on surprise minimization, over classical utility maximization schemes. Furthermore, midbrain activity, encompassing dopamine projection neurons, was accurately predicted by trial-by-trial variations in model-based estimates of precision. Our findings demonstrate that human subjects infer both optimal policies and the precision of those inferences, and thus support the notion that humans perform hierarchical probabilistic Bayesian inference. In other words, subjects have to infer both what they should do as well as how confident they are in their choices, where confidence may be encoded by dopaminergic firing

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    GM1 Ganglioside Modifies α-Synuclein Toxicity and is Neuroprotective in a Rat α-Synuclein Model of Parkinson\u27s Disease.

    Get PDF
    While GM1 may interact with α-synuclein in vitro to inhibit aggregation, the ability of GM1 to protect against α-synuclein toxicity in vivo has not been investigated. We used targeted adeno-associated viral vector (AAV) overexpression of human mutant α-synuclein (A53T) in the rat substantia nigra (SN) to produce degeneration of SN dopamine neurons, loss of striatal dopamine levels, and behavioral impairment. Some animals received daily GM1 ganglioside administration for 6 weeks, beginning 24 hours after AAV-A53T administration or delayed start GM1 administration for 5 weeks beginning 3 weeks after AAV-A53T administration. Both types of GM1 administration protected against loss of SN dopamine neurons and striatal dopamine levels, reduced α-synuclein aggregation, and delayed start administration of GM1 reversed early appearing behavioral deficits. These results extend prior positive results in MPTP models, are consistent with the results of a small clinical study of GM1 in PD patients that showed slowing of symptom progression with chronic use, and argue for the continued refinement and development of GM1 as a potential disease modifying therapy for PD

    Involvement of the cortico-basal ganglia-thalamocortical loop in developmental stuttering

    Get PDF
    Stuttering is a complex neurodevelopmental disorder that has to date eluded a clear explication of its pathophysiological bases. In this review, we utilize the Directions Into Velocities of Articulators (DIVA) neurocomputational modeling framework to mechanistically interpret relevant findings from the behavioral and neurological literatures on stuttering. Within this theoretical framework, we propose that the primary impairment underlying stuttering behavior is malfunction in the cortico-basal ganglia-thalamocortical (hereafter, cortico-BG) loop that is responsible for initiating speech motor programs. This theoretical perspective predicts three possible loci of impaired neural processing within the cortico-BG loop that could lead to stuttering behaviors: impairment within the basal ganglia proper; impairment of axonal projections between cerebral cortex, basal ganglia, and thalamus; and impairment in cortical processing. These theoretical perspectives are presented in detail, followed by a review of empirical data that make reference to these three possibilities. We also highlight any differences that are present in the literature based on examining adults versus children, which give important insights into potential core deficits associated with stuttering versus compensatory changes that occur in the brain as a result of having stuttered for many years in the case of adults who stutter. We conclude with outstanding questions in the field and promising areas for future studies that have the potential to further advance mechanistic understanding of neural deficits underlying persistent developmental stuttering.R01 DC007683 - NIDCD NIH HHS; R01 DC011277 - NIDCD NIH HHSPublished versio
    corecore