2,978 research outputs found

    Secure and Proficient Cross Layer (SPCL) QoS Framework for Mobile Ad-hoc

    Get PDF
    A cross layer QoS framework is a complete system that provides required QoS services to each node present in the network. All components within it cooperate together for providing the required services. In existing QoS frameworks there is no security mechanism provided while Security is a critical aspect for QoS in the MANET environment. Cross layer QoS framework  tend to be vulnerable to a number of threats and attacks like, over/under-reporting of available bandwidth, over-reservation, state table starvation, QoS degradation,  information disclosure, theft of services timing attack, flooding attack, replay attack, and denial of service (DoS) attack,  attacks on information in transit and attacks against routing. So it is necessary when designing protocols for QoS framework, the harmony between security and QoS must be present as one impacts the others. In this work we proposed secure and proficient cross layer (SPCL) QoS frameworks which prevents from various types of threats and attacks.  The proposed SPCL QoS framework achieves better performance compared to existing QoS frameworks  in metrics of throughput, packet drop ratio, end-to-end delay, and average jitter in both condition when malicious node present in the network and when malicious node not present in the networ

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this  an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    Overview on Network Security and its Vulnerabilities

    Get PDF
    In this paper, we talk about security issues and their current results in the versatile specially appointed system. Mobile ad hoc network can be defined as a collection of mobile nodes which can be useful for form a network without help existing network. Nodes in network act as host and router which is used for send the packets for other device. The nature of MANET are dynamic topology, node mobility, scalability, self organizing capability is lead the network. Many security threats that disturb the open and distributed communication development which is challenging task .We first break down the primary vulnerabilities in the portable mobile ad hoc networks, which have made it much simpler to experience the ill effects of assaults than the conventional wired system. At that point we talk about the security criteria of the portable mobile ad hoc network what more present the principle assault sorts that exist in it. At last we overview the current security answers for the portable specially appointed system

    Secure and Economical Cost Aware Routing Protocol in Wireless Sensor Networks

    Get PDF
    The main objective of the paper is to supply security and to expand the network lifetime The energy management domain is selected to reinforce the security system in wireless sensor networks A typical wireless sensor network consists of many trivial and low-power sensors that sense radio frequencies to perform disseminate sensing tasks These nodes typically have really restri cted and non-replenish prepared energy resources that produces energy and an important vogue issue for these networks Routing is another really troublesome vogue issue for WSNs Properly designed routing protocol not absolutely guarantees high message delivery relation and low energy consumption for message delivery but in addition it should balance the full sensor network energy consumption and thereby extend the sensor network fundamental measure Throughout this paper the tendency to confer Secure and Economical value Aware Secure Routing protocol for WSNs to balance the energy consumption and enhance the network fundamental measure Further the tendency to reinforce very cheap work to avoid the fake energy indicator nodes by victimizing the house parameter

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Secure Multicast Routing Protocol in Manets Using Efficient ECGDH Algorithm

    Get PDF
    An Ad-hoc Network covers a set of autonomous mobile nodes that communicates through wireless communication in an infrastructure-less environment. Mostly MANETs are used in group communication mechanisms like military applications, emergency search, rescue operations, vehicular ad-hoc communications and mining operations etc. In such type of networks, group communication is takes place by multicasting technique. Communication and collaboration is necessary among the nodes in the groups in multicast protocols. PUMA has the best multicast routing protocol compared to tree and mesh based multicast protocols although it suffers from security issues. PUMA mainly suffers from Man In The middle attack. MITM attack generates traffic flow, drop the packets and miscommunicate the neighbor nodes with false hop count. So defending from MITM attack we designed a new mechanism called Elliptic Curve Group Diffie-Hellman (ECGDH). This paper compares results of PUMA [1] routing protocol with legitimate, under attack and after providing security against attack. Finally we observed ECGDH [2] gives efficient results even attack has happened

    Congestion Control in Mobile Ad Hoc Network using modified acknowledgement with secure channel

    Get PDF
    The mobile ad hoc network is self-configuring and dynamic in nature. Due to its dynamic topology node can join or leave any time and each node behaves as router or host which can deliver the packets from source to destination. Due to the heavy traffic load over network congestion occur. To avoid the congestion on network various congestion control mechanism has been developed but in this we use modified-ACK based scheme for node authentication in AODV protocol. The simulation of our proposed work is done on network simulator NS-2.34 and comparative analysis of our proposed methodology is done using performance metrics such as packet delivery ratio, throughput, end-end delay average jitter and routing load.   Keywords MANET, Congestion Control, AODV, ACK, PDR, Network Simulato
    • …
    corecore