73 research outputs found

    Digital Sensitivity: Predicting signal interaction using functional analysis

    Get PDF
    Abstract Maintaining signal integrity in digital systems is becoming increasingly dicult due to the rising number of analog effects seen in deep sub-micron design. One such eect, the signal crosstalk problem, is now a serious design concern. Signals which couple electrically may not aect system behavior because of timing or function in the digital domain. If we can isolate observable coupling eects then we can constrain layout synthesis to eliminate the

    Developments in the tools and methodologies of synthetic biology.

    Get PDF
    Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a body of knowledge from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community

    Design and Implementation of Novel High Performance Domino Logic

    Get PDF
    This dissertation presents design and implementation of novel high performance domino logic techniques with increased noise robustness and reduced leakages. The speed and overhead area became the primary parameters of choice for fabrication industry that led to invention of clocked logic styles named as Dynamic logic and Domino logic families. Most importantly, power consumption, noise immunity, speed of operation, area and cost are the predominant parameters for designing any kind of digital logic circuit technique with effective trade-off amongst these parameters depending on the situation and application of design. Because of its high speed and low overhead area domino logic became process of choice for designing of high speed application circuits. The concerning issues are large power consumption and high sensitivity towards noise. Hence, there is a need for designing new domino methodology to meet the requirements by overcoming above mentioned drawbacks which led to ample opportunities for diversified research in this field. Therefore, the outcome of research must be able to handle the primary design parameters efficiently. Besides this, the designed circuit must exhibit high degree of robustness towards noise.In this thesis, few domino logic circuit techniques are proposed to deal with noise and sub-threshold leakages. Effect of signal integrity issues on domino logic techniques is studied. Furthermore, having been subjected to process corner analysis and noise analysis, the overall performance of proposed domino techniques is found to be enhanced despite a few limitations that are mentioned in this work. Besides this, lector based domino and dynamic node stabilized techniques are also proposed and are investigated thoroughly. Simulations show that proposed circuits are showing superior performance. In addition to this, domino based Schmitt triggers with various hysteresis phenomena are designed and simulated. Pre-layout and post-layout simulation results are compared for proposed Schmitt trigger. Simulations reveal that proposed Schmitt trigger techniques are more noise tolerant than CMOS counterparts. Moreover, a test chip for domino based Schmitt trigger is done in UMC 180 nm technology for fabrication

    Emerging Technologies - NanoMagnets Logic (NML)

    Get PDF
    In the last decades CMOS technology has ruled the electronic scenario thanks to the constant scaling of transistor sizes. With the reduction of transistor sizes circuit area decreases, clock frequency increases and power consumption decreases accordingly. However CMOS scaling is now approaching its physical limits and many believe that CMOS technology will not be able to reach the end of the Roadmap. This is mainly due to increasing difficulties in the fabrication process, that is becoming very expensive, and to the unavoidable impact of leakage losses, particularly thanks to gate tunnel current. In this scenario many alternative technologies are studied to overcome the limitations of CMOS transistors. Among these possibilities, magnetic based technologies, like NanoMagnet Logic (NML) are among the most interesting. The reason of this interest lies in their magnetic nature, that opens up entire new possibilities in the design of logic circuits, like the possibility to mix logic and memory in the same device. Moreover they have no standby power consumption and potentially a much lower power consumption of CMOS transistors. In literature NML logic is well studied and theoretical and experimental proofs of concept were already found. However two important points are not enough considered in the analysis approach followed by most of the work in literature. First of all, no complex circuits are analyzed. NML logic is very different from CMOS technologies, so to completely understand the potential of this technology it is mandatory to investigate complex architectures. Secondly, most of the solutions proposed do not take into account the constraints derived from fabrication process, making them unrealistic and difficult to be fabricated experimentally. This thesis focuses therefore on NML logic keeping into account these two important limitations in the research approach followed in literature. The aim is to obtain a complete and accurate overview of NML logic, finding realistic circuital solutions and trying to improve at the same time their performance. After a brief and complete introduction (Chapter 1), the thesis is divided in two parts, which cover the two fundamental points followed in this three years of research: A circuits architecture analysis and a technological analysis. In the architecture analysis first an innovative VHDL model is described in Chapter 2. This model is extensively used in the analysis because it allows fast simulation of complex circuits, with, at the same time, the possibility to estimate circuit per- formance, like area and power consumption. In Chapter 3 the problem of signals synchronization in complex NML circuits is analyzed and solved, using as benchmark a simple but complete NML microprocessor. Different solutions based on asynchronous logic are studied and a new asynchronous solution, specifically designed to exploit the potential of NML logic, is developed. In Chapter 4 the layout of NML circuits is studied on a more physical level, considering the limitations of fabrication processes. The layout of NML circuits is therefore changed accordingly to these constraints. Secondly CMOS circuits architectures are compared to more simple architectures, evaluating therefore which one is more suited for NML logic. Finally the problem of interconnections in NML technology is analyzed and solutions to improve it are found. In Chapter 5 the problem of feedback signals in heavy pipelined technologies, like NML, is studied. Solutions to improve performances and synchronize signals are developed. Systolic arrays are then analyzed as possible candidate to exploit NML potential. Finally in Chapter 6 ToPoliNano, a simulator dedicated to NML and other emerging technologies, that we are developing, is described. This simulator allows to follow the same top-down approach followed for CMOS technology. The layout generator and the simulation engine are detailed described. In the first chapter of the technological analysis (Chapter 7), the performance of NML logic is explored throughout low level simulations. The aim is to understand if these circuits can be fabricated with optical lithography, allowing therefore the commercial development of NML logic. Basic logic gates and the clock system are there analyzed from a low level perspective. In Chapter 8 an innovative electric clock system for NML technology is shown and the first experimental results are reported. This clock system allows to achieve true low power for NML technology, obtaining a reduction of power consumption of 20 times considering the best CMOS transistors available. This power consumption takes into account all the losses, also the clock system losses. Moreover the solution presented can be fabricated with current technological processes. The research work behind this thesis represents an important breakthrough in NML logic. The solutions here presented allow the design and fabrication of complex NML circuits, considering the particular characteristics of this technology and considerably improving the performance. Moreover the technological solutions here presented allow the design and fabrication of circuits with available fabrication process with a considerable advantage over CMOS in terms of power consumption. This thesis represents therefore a considerable step froward in the study and development of NML technolog

    Function Implementation in a Multi-Gate Junctionless FET Structure

    Get PDF
    Title from PDF of title page, viewed September 18, 2023Dissertation advisor: Mostafizur RahmanVitaIncludes bibliographical references (pages 95-117)Dissertation (Ph.D.)--Department of Computer Science and Electrical Engineering, Department of Physics and Astronomy. University of Missouri--Kansas City, 2023This dissertation explores designing and implementing a multi-gate junctionless field-effect transistor (JLFET) structure and its potential applications beyond conventional devices. The JLFET is a promising alternative to conventional transistors due to its simplified fabrication process and improved electrical characteristics. However, previous research has focused primarily on the device's performance at the individual transistor level, neglecting its potential for implementing complex functions. This dissertation fills this research gap by investigating the function implementation capabilities of the JLFET structure and proposing novel circuit designs based on this technology. The first part of this dissertation presents a comprehensive review of the existing literature on JLFETs, including their fabrication techniques, operating principles, and performance metrics. It highlights the advantages of JLFETs over traditional metal-oxide-semiconductor field-effect transistors (MOSFETs) and discusses the challenges associated with their implementation. Additionally, the review explores the limitations of conventional transistor technologies, emphasizing the need for exploring alternative device architectures. Building upon the theoretical foundation, the dissertation presents a detailed analysis of the multi-gate JLFET structure and its potential for realizing advanced functions. The study explores the impact of different design parameters, such as channel length, gate oxide thickness, and doping profiles, on the device performance. It investigates the trade-offs between power consumption, speed, and noise immunity, and proposes design guidelines for optimizing the function implementation capabilities of the JLFET. To demonstrate the practical applicability of the JLFET structure, this dissertation introduces several novel circuit designs based on this technology. These designs leverage the unique characteristics of the JLFET, such as its steep subthreshold slope and improved on/off current ratio, to implement complex functions efficiently. The proposed circuits include arithmetic units, memory cells, and digital logic gates. Detailed simulations and analyses are conducted to evaluate their performance, power consumption, and scalability. Furthermore, this dissertation explores the potential of the JLFET structure for emerging technologies, such as neuromorphic computing and bioelectronics. It investigates how the JLFET can be employed to realize energy-efficient and biocompatible devices for applications in artificial intelligence and biomedical engineering. The study investigates the compatibility of the JLFET with various materials and substrates, as well as its integration with other functional components. In conclusion, this dissertation contributes to the field of nanoelectronics by providing a comprehensive investigation into the function implementation capabilities of the multi-gate JLFET structure. It highlights the potential of this device beyond its individual transistor performance and proposes novel circuit designs based on this technology. The findings of this research pave the way for the development of advanced electronic systems that are more energy-efficient, faster, and compatible with emerging applications in diverse fields.Introduction -- Literature review -- Crosstalk principle -- Experiment of crosstalk -- Device architecture -- Simulation & results -- Conclusio

    Generadores de pulso del orden de nanosegundos para control de calidad y diagnosis de las cámaras de telescopios Cherenkov

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física Aplicada III (Electricidad y Electrónica), leída el 30-11-2015Depto. de Estructura de la Materia, Física Térmica y ElectrónicaFac. de Ciencias FísicasTRUEunpu

    Design and Analysis of Improved Domino Logic with Noise Tolerance and High Performance

    Get PDF
    The demands of upcoming computing, as well as the challenges of nanometer-era of VLSI design necessitate new digital logic techniques and styles that are at the same time high performance, energy efficient and robust to noise and variation. Dynamic CMOS logic gates are broadly used to design high performance circuits due to their high speed. Conversely, the vital demerit of dynamic logic style is its high noise sensitivity. The main reason for this is the sub-threshold leakage current flowing through the pull down network. With continuous technology scaling, this problem is getting more and more severe. In this thesis, a new noise tolerant dynamic CMOS circuit technique is proposed. In the proposed work, we have enhanced the behavior of the domino CMOS logic. This technique also gets benefit in terms of delay and power. This thesis describes the new low power, noise tolerant and high speed domino logic technique and presents a comparison result of this logic with previously reported schemes. Simulation results prove that, in 180 nm CMOS technology when we used this logic style to realize wide fan-in logic gates, it could achieve maximum level of noise robustness as compared to its basic counterpart. In addition, the logic also works efficiently with sequential circuits. The feasibility of this new technique is demonstrated by means of a real hardware, we have built a custom test-chip in the UMC 180 nm process technology with an ALU core, using the proposed domino logic style for each design block. In this thesis, we have also described the design and implementation of this chip. In addition to this, we have also presented initial power and delay performance comparisons between the circuit level simulated ALU and test-chip implemented in the proposed domino logic style. Finally we conclude that, the thesis contributes a very efficient logic style for wide fan-in gates, which is not only noise robust but also energy efficient and high speed
    corecore