39 research outputs found

    International Journal of Mathematical Combinatorics, Vol.6

    Get PDF
    The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 460 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences

    Randomized Search of Graphs in Log Space and Probabilistic Computation

    Full text link
    Reingold has shown that L = SL, that s-t connectivity in a poly-mixing digraph is complete for promise-RL, and that s-t connectivity for a poly-mixing out-regular digraph with known stationary distribution is in L. Several properties that bound the mixing times of random walks on digraphs have been identified, including the digraph conductance and the digraph spectral expansion. However, rapidly mixing digraphs can still have exponential cover time, thus it is important to specifically identify structural properties of digraphs that effect cover times. We examine the complexity of random walks on a basic parameterized family of unbalanced digraphs called Strong Chains (which model weakly symmetric logspace computations), and a special family of Strong Chains called Harps. We show that the worst case hitting times of Strong Chain families vary smoothly with the number of asymmetric vertices and identify the necessary condition for non-polynomial cover time. This analysis also yields bounds on the cover times of general digraphs. Next we relate random walks on graphs to the random walks that arise in Monte Carlo methods applied to optimization problems. We introduce the notion of the asymmetric states of Markov chains and use this definition to obtain some results about Markov chains. We also obtain some results on the mixing times for Markov Chain Monte Carlo Methods. Finally, we consider the question of whether a single long random walk or many short walks is a better strategy for exploration. These are walks which reset to the start after a fixed number of steps. We exhibit digraph families for which a few short walks are far superior to a single long walk. We introduce an iterative deepening random search. We use this strategy estimate the cover time for poly-mixing subgraphs. Finally we discuss complexity theoretic implications and future work

    Separating codes and traffic monitoring

    Get PDF
    International audienceThis paper studies the problem of traffic monitoring which consists of differentiating a set of walks on a directed graph by placing sensors on as few arcs as possible. The problem of characterising a set of individuals by testing as few attributes as possible is already well-known, but traffic monitoring presents new challenges that the previous models of separation fall short from modelling such as taking into account the multiplicity and order of the arcs in a walk. We introduce a new and stronger model of separation based on languages that generalises the traffic monitoring problem. We study three subproblems with practical applications and develop methods to solve them by combining integer linear programming, separating codes and language theory
    corecore