35,284 research outputs found

    3-Factor-criticality in double domination edge critical graphs

    Full text link
    A vertex subset SS of a graph GG is a double dominating set of GG if N[v]S2|N[v]\cap S|\geq 2 for each vertex vv of GG, where N[v]N[v] is the set of the vertex vv and vertices adjacent to vv. The double domination number of GG, denoted by γ×2(G)\gamma_{\times 2}(G), is the cardinality of a smallest double dominating set of GG. A graph GG is said to be double domination edge critical if γ×2(G+e)<γ×2(G)\gamma_{\times 2}(G+e)<\gamma_{\times 2}(G) for any edge eEe \notin E. A double domination edge critical graph GG with γ×2(G)=k\gamma_{\times 2}(G)=k is called kk-γ×2(G)\gamma_{\times 2}(G)-critical. A graph GG is rr-factor-critical if GSG-S has a perfect matching for each set SS of rr vertices in GG. In this paper we show that GG is 3-factor-critical if GG is a 3-connected claw-free 44-γ×2(G)\gamma_{\times 2}(G)-critical graph of odd order with minimum degree at least 4 except a family of graphs.Comment: 14 page

    Packing 3-vertex paths in claw-free graphs and related topics

    Get PDF
    An L-factor of a graph G is a spanning subgraph of G whose every component is a 3-vertex path. Let v(G) be the number of vertices of G and d(G) the domination number of G. A claw is a graph with four vertices and three edges incident to the same vertex. A graph is claw-free if it has no induced subgraph isomorphic to a claw. Our results include the following. Let G be a 3-connected claw-free graph, x a vertex in G, e = xy an edge in G, and P a 3-vertex path in G. Then (a1) if v(G) = 0 mod 3, then G has an L-factor containing (avoiding) e, (a2) if v(G) = 1 mod 3, then G - x has an L-factor, (a3) if v(G) = 2 mod 3, then G - {x,y} has an L-factor, (a4) if v(G) = 0 mod 3 and G is either cubic or 4-connected, then G - P has an L-factor, (a5) if G is cubic with v(G) > 5 and E is a set of three edges in G, then G - E has an L-factor if and only if the subgraph induced by E in G is not a claw and not a triangle, (a6) if v(G) = 1 mod 3, then G - {v,e} has an L-factor for every vertex v and every edge e in G, (a7) if v(G) = 1 mod 3, then there exist a 4-vertex path N and a claw Y in G such that G - N and G - Y have L-factors, and (a8) d(G) < v(G)/3 +1 and if in addition G is not a cycle and v(G) = 1 mod 3, then d(G) < v(G)/3. We explore the relations between packing problems of a graph and its line graph to obtain some results on different types of packings. We also discuss relations between L-packing and domination problems as well as between induced L-packings and the Hadwiger conjecture. Keywords: claw-free graph, cubic graph, vertex disjoint packing, edge disjoint packing, 3-vertex factor, 3-vertex packing, path-factor, induced packing, graph domination, graph minor, the Hadwiger conjecture.Comment: 29 page

    On Minimum Maximal Distance-k Matchings

    Full text link
    We study the computational complexity of several problems connected with finding a maximal distance-kk matching of minimum cardinality or minimum weight in a given graph. We introduce the class of kk-equimatchable graphs which is an edge analogue of kk-equipackable graphs. We prove that the recognition of kk-equimatchable graphs is co-NP-complete for any fixed k2k \ge 2. We provide a simple characterization for the class of strongly chordal graphs with equal kk-packing and kk-domination numbers. We also prove that for any fixed integer 1\ell \ge 1 the problem of finding a minimum weight maximal distance-22\ell matching and the problem of finding a minimum weight (21)(2 \ell - 1)-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of δlnV(G)\delta \ln |V(G)| unless P=NP\mathrm{P} = \mathrm{NP}, where δ\delta is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.Comment: 15 pages, 4 figure

    Centroidal bases in graphs

    Get PDF
    We introduce the notion of a centroidal locating set of a graph GG, that is, a set LL of vertices such that all vertices in GG are uniquely determined by their relative distances to the vertices of LL. A centroidal locating set of GG of minimum size is called a centroidal basis, and its size is the centroidal dimension CD(G)CD(G). This notion, which is related to previous concepts, gives a new way of identifying the vertices of a graph. The centroidal dimension of a graph GG is lower- and upper-bounded by the metric dimension and twice the location-domination number of GG, respectively. The latter two parameters are standard and well-studied notions in the field of graph identification. We show that for any graph GG with nn vertices and maximum degree at least~2, (1+o(1))lnnlnlnnCD(G)n1(1+o(1))\frac{\ln n}{\ln\ln n}\leq CD(G) \leq n-1. We discuss the tightness of these bounds and in particular, we characterize the set of graphs reaching the upper bound. We then show that for graphs in which every pair of vertices is connected via a bounded number of paths, CD(G)=Ω(E(G))CD(G)=\Omega\left(\sqrt{|E(G)|}\right), the bound being tight for paths and cycles. We finally investigate the computational complexity of determining CD(G)CD(G) for an input graph GG, showing that the problem is hard and cannot even be approximated efficiently up to a factor of o(logn)o(\log n). We also give an O(nlnn)O\left(\sqrt{n\ln n}\right)-approximation algorithm

    Domination in graphs of minimum degree at least two and large girth

    Get PDF
    We prove that for graphs of order n, minimum degree 2 and girth g 5 the domination number satisfies 1 3 + 2 3gn. As a corollary this implies that for cubic graphs of order n and girth g 5 the domination number satisfies 44 135 + 82 135gn which improves recent results due to Kostochka and Stodolsky (An upper bound on the domination number of n-vertex connected cubic graphs, manuscript (2005)) and Kawarabayashi, Plummer and Saito (Domination in a graph with a 2-factor, J. Graph Theory 52 (2006), 1-6) for large enough girth. Furthermore, it confirms a conjecture due to Reed about connected cubic graphs (Paths, stars and the number three, Combin. Prob. Comput. 5 (1996), 267-276) for girth at least 83

    Total Roman Domination Number of Rooted Product Graphs

    Full text link
    [EN] Let G be a graph with no isolated vertex and f:V(G)->{0,1,2} a function. If f satisfies that every vertex in the set {v is an element of V(G):f(v)=0} is adjacent to at least one vertex in the set {v is an element of V(G):f(v)=2}, and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum weight omega(f)= n-ary sumation v is an element of V(G)f(v) among all total Roman dominating functions f on G is the total Roman domination number of G. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.Cabrera Martinez, A.; Cabrera García, S.; Carrión García, A.; Hernandez Mira, FA. (2020). Total Roman Domination Number of Rooted Product Graphs. Mathematics. 8(10):1-13. https://doi.org/10.3390/math8101850S11381

    On the Complexity of Co-secure Dominating Set Problem

    Full text link
    A set DVD \subseteq V of a graph G=(V,E)G=(V, E) is a dominating set of GG if every vertex vVDv\in V\setminus D is adjacent to at least one vertex in D.D. A set SVS \subseteq V is a co-secure dominating set (CSDS) of a graph GG if SS is a dominating set of GG and for each vertex uSu \in S there exists a vertex vVSv \in V\setminus S such that uvEuv \in E and (S{u}){v}(S\setminus \{u\}) \cup \{v\} is a dominating set of GG. The minimum cardinality of a co-secure dominating set of GG is the co-secure domination number and it is denoted by γcs(G)\gamma_{cs}(G). Given a graph G=(V,E)G=(V, E), the minimum co-secure dominating set problem (Min Co-secure Dom) is to find a co-secure dominating set of minimum cardinality. In this paper, we strengthen the inapproximability result of Min Co-secure Dom for general graphs by showing that this problem can not be approximated within a factor of (1ϵ)lnV(1- \epsilon)\ln |V| for perfect elimination bipartite graphs and star convex bipartite graphs unless P=NP. On the positive side, we show that Min Co-secure Dom can be approximated within a factor of O(lnV)O(\ln |V|) for any graph GG with δ(G)2\delta(G)\geq 2. For 33-regular and 44-regular graphs, we show that Min Co-secure Dom is approximable within a factor of 83\dfrac{8}{3} and 103\dfrac{10}{3}, respectively. Furthermore, we prove that Min Co-secure Dom is APX-complete for 33-regular graphs.Comment: 12 pages, 2 figure

    On the complexity of the vector connectivity problem

    Full text link
    We study a relaxation of the Vector Domination problem called Vector Connectivity (VecCon). Given a graph GG with a requirement r(v)r(v) for each vertex vv, VecCon asks for a minimum cardinality set SS of vertices such that every vertex vVSv\in V\setminus S is connected to SS via r(v)r(v) disjoint paths. In the paper introducing the problem, Boros et al. [Networks, 2014] gave polynomial-time solutions for VecCon in trees, cographs, and split graphs, and showed that the problem can be approximated in polynomial time on nn-vertex graphs to within a factor of logn+2\log n+2, leaving open the question of whether the problem is NP-hard on general graphs. We show that VecCon is APX-hard in general graphs, and NP-hard in planar bipartite graphs and in planar line graphs. We also generalize the polynomial result for trees by solving the problem for block graphs.Comment: 14 page

    Domination Graphs Of Tournaments And Other Digraphs

    Get PDF
    corecore