644 research outputs found

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper

    A Characterization of Connected (1,2)-Domination Graphs of Tournaments

    Get PDF
    Recently. Hedetniemi et aI. introduced (1,2)-domination in graphs, and the authors extended that concept to (1, 2)-domination graphs of digraphs. Given vertices x and y in a digraph D, x and y form a (1,2)-dominating pair if and only if for every other vertex z in D, z is one step away from x or y and at most two steps away from the other. The (1,2)-dominating graph of D, dom1,2 (D), is defined to be the graph G = (V, E ) , where V (G) = V (D), and xy is an edge of G whenever x and y form a (1,2)-dominating pair in D. In this paper, we characterize all connected graphs that can be (I, 2)-dominating graphs of tournaments

    The (1,2)-Step Competition Graph of a Tournament

    Get PDF
    The competition graph of a digraph, introduced by Cohen in 1968, has been extensively studied. More recently, in 2000, Cho, Kim, and Nam defined the m-step competition graph. In this paper, we offer another generalization of the competition graph. We define the (1,2)-step competition graph of a digraph D, denoted C1,2(D), as the graph on V(D) where {x,y}∈E(C1,2(D)) if and only if there exists a vertex z≠x,y, such that either dD−y(x,z)=1 and dD−x(y,z)≤2 or dD−x(y,z)=1 and dD−y(x,z)≤2. In this paper, we characterize the (1,2)-step competition graphs of tournaments and extend our results to the (i,k)-step competition graph of a tournament

    Digraphs with Isomorphic Underlying and Domination Graphs: Pairs of Paths

    Get PDF
    A domination graph of a digraph D, dom (D), is created using thc vertex set of D and edge uv ϵ E (dom (D)) whenever (u, z) ϵ A (D) or (v, z) ϵ A (D) for any other vertex z ϵ A (D). Here, we consider directed graphs whose underlying graphs are isomorphic to their domination graphs. Specifically, digraphs are completely characterized where UGc (D) is the union of two disjoint paths

    Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments

    Full text link
    A digraph such that every proper induced subdigraph has a kernel is said to be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-tournament is C→3\overrightarrow{C}_3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 33-quasi-transitive and asymmetric 33-anti-quasi-transitive TT3TT_3-free and we state that the problem of determining whether a digraph of one of these families is CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.Comment: 13 pages and 5 figure

    Modularity and Optimality in Social Choice

    Get PDF
    Marengo and the second author have developed in the last years a geometric model of social choice when this takes place among bundles of interdependent elements, showing that by bundling and unbundling the same set of constituent elements an authority has the power of determining the social outcome. In this paper we will tie the model above to tournament theory, solving some of the mathematical problems arising in their work and opening new questions which are interesting not only from a mathematical and a social choice point of view, but also from an economic and a genetic one. In particular, we will introduce the notion of u-local optima and we will study it from both a theoretical and a numerical/probabilistic point of view; we will also describe an algorithm that computes the universal basin of attraction of a social outcome in O(M^3 logM) time (where M is the number of social outcomes).Comment: 42 pages, 4 figures, 8 tables, 1 algorithm
    • …
    corecore