4,595 research outputs found

    Changing upper irredundance by edge addition

    Get PDF
    AbstractDenote the upper irredundance number of a graph G by IR(G). A graph G is IR-edge-addition-sensitive if its upper irredundance number changes whenever an edge of Ḡ is added to G. Specifically, G is IR-edge-critical (IR+-edge-critical, respectively) if IR(G+e)<IR(G) (IR(G+e)>IR(G), respectively) for each edge e of Ḡ. We show that if G is IR-edge-addition-sensitive, then G is either IR-edge-critical or IR+-edge-critical. We obtain properties of the latter class of graphs, particularly in the case where β(G)=IR(G)=2 (where β(G) denotes the vertex independence number of G). This leads to an infinite class of IR+-edge-critical graphs where IR(G)=2

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Total domination stable graphs upon edge addition

    Get PDF
    AbstractA set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge addition stable if the addition of an arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge addition stable graphs. We determine a sharp upper bound on the total domination number of total domination edge addition stable graphs, and we determine which combinations of order and total domination number are attainable. We finish this work with an investigation of claw-free total domination edge addition stable graphs

    From rubber bands to rational maps: A research report

    Get PDF
    This research report outlines work, partially joint with Jeremy Kahn and Kevin Pilgrim, which gives parallel theories of elastic graphs and conformal surfaces with boundary. One one hand, this lets us tell when one rubber band network is looser than another, and on the other hand tell when one conformal surface embeds in another. We apply this to give a new characterization of hyperbolic critically finite rational maps among branched self-coverings of the sphere, by a positive criterion: a branched covering is equivalent to a hyperbolic rational map if and only if there is an elastic graph with a particular "self-embedding" property. This complements the earlier negative criterion of W. Thurston.Comment: 52 pages, numerous figures. v2: New example

    Master index to volumes 251-260

    Get PDF

    Oka manifolds: From Oka to Stein and back

    Full text link
    Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert's classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989. In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations of Oka manifolds, the functorial properties of this class, and geometric sufficient conditions for being Oka, the most important of which is Gromov's ellipticity. We survey the current status of the theory in terms of known examples of Oka manifolds, mention open problems and outline the proofs of the main results. In the appendix by F. Larusson it is explained how Oka manifolds and Oka maps, along with Stein manifolds, fit into an abstract homotopy-theoretic framework. The article is an expanded version of the lectures given by the author at the Winter School KAWA-4 in Toulouse, France, in January 2013. A more comprehensive exposition of Oka theory is available in the monograph F. Forstneric, Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis), Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 56, Springer-Verlag, Berlin-Heidelberg (2011).Comment: With an appendix by Finnur Larusson. To appear in Ann. Fac. Sci. Toulouse Math. (6), vol. 22, no. 4. This version is identical with the published tex

    The random geometry of equilibrium phases

    Full text link
    This is a (long) survey about applications of percolation theory in equilibrium statistical mechanics. The chapters are as follows: 1. Introduction 2. Equilibrium phases 3. Some models 4. Coupling and stochastic domination 5. Percolation 6. Random-cluster representations 7. Uniqueness and exponential mixing from non-percolation 8. Phase transition and percolation 9. Random interactions 10. Continuum modelsComment: 118 pages. Addresses: [email protected] http://www.mathematik.uni-muenchen.de/~georgii.html [email protected] http://www.math.chalmers.se/~olleh [email protected]
    • …
    corecore