66,133 research outputs found

    The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable

    Full text link
    Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order nn is at most 95n1395^{\frac{n}{13}} and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula. We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the \textit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding rr-matchings and improve a bound from G\'orska and Skupie\'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful)

    A characterization of trees with equal 2-domination and 2-independence numbers

    Full text link
    A set SS of vertices in a graph GG is a 22-dominating set if every vertex of GG not in SS is adjacent to at least two vertices in SS, and SS is a 22-independent set if every vertex in SS is adjacent to at most one vertex of SS. The 22-domination number γ2(G)\gamma_2(G) is the minimum cardinality of a 22-dominating set in GG, and the 22-independence number α2(G)\alpha_2(G) is the maximum cardinality of a 22-independent set in GG. Chellali and Meddah [{\it Trees with equal 22-domination and 22-independence numbers,} Discussiones Mathematicae Graph Theory 32 (2012), 263--270] provided a constructive characterization of trees with equal 22-domination and 22-independence numbers. Their characterization is in terms of global properties of a tree, and involves properties of minimum 22-dominating and maximum 22-independent sets in the tree at each stage of the construction. We provide a constructive characterization that relies only on local properties of the tree at each stage of the construction.Comment: 17 pages, 4 figure

    Bounds for the Number of Independent and Dominating Sets in Trees

    Get PDF
    In this work, we investigate bounds on the number of independent sets in a graph and its complement, along with the corresponding question for number of dominating sets. Nordhaus and Gaddum gave bounds on χ(G)+χ(G) and χ(G) χ(G), where G is any graph on n vertices and χ(G) is the chromatic number of G. Nordhaus-Gaddum- type inequalities have been studied for many other graph invariants. In this work, we concentrate on i(G), the number of independent sets in G, and ∂(G), the number of dominating sets in G. We focus our attention on Nordhaus-Gaddum-type inequalities over trees on a fixed number of vertices. In particular, we give sharp upper and lower bounds on i(T )+ i(T ) where T is a tree on n vertices, improving bounds and proofs of Hu and Wei. We also give upper and lower bounds on i(G) + i(G) where G is a unicyclic graph on n vertices, again improving a result of Hu and Wei. Lastly, we investigate ∂(T )+ ∂(T ) where T is a tree on n vertices. We use a result of Wagner to give a lower bound and make a conjecture about an upper bound

    Tight Complexity Bounds for Counting Generalized Dominating Sets in Bounded-Treewidth Graphs

    Full text link
    We investigate how efficiently a well-studied family of domination-type problems can be solved on bounded-treewidth graphs. For sets σ,ρ\sigma,\rho of non-negative integers, a (σ,ρ)(\sigma,\rho)-set of a graph GG is a set SS of vertices such that N(u)Sσ|N(u)\cap S|\in \sigma for every uSu\in S, and N(v)Sρ|N(v)\cap S|\in \rho for every v∉Sv\not\in S. The problem of finding a (σ,ρ)(\sigma,\rho)-set (of a certain size) unifies standard problems such as Independent Set, Dominating Set, Independent Dominating Set, and many others. For all pairs of finite or cofinite sets (σ,ρ)(\sigma,\rho), we determine (under standard complexity assumptions) the best possible value cσ,ρc_{\sigma,\rho} such that there is an algorithm that counts (σ,ρ)(\sigma,\rho)-sets in time cσ,ρtwnO(1)c_{\sigma,\rho}^{\sf tw}\cdot n^{O(1)} (if a tree decomposition of width tw{\sf tw} is given in the input). For example, for the Exact Independent Dominating Set problem (also known as Perfect Code) corresponding to σ={0}\sigma=\{0\} and ρ={1}\rho=\{1\}, we improve the 3twnO(1)3^{\sf tw}\cdot n^{O(1)} algorithm of [van Rooij, 2020] to 2twnO(1)2^{\sf tw}\cdot n^{O(1)}. Despite the unusually delicate definition of cσ,ρc_{\sigma,\rho}, we show that our algorithms are most likely optimal, i.e., for any pair (σ,ρ)(\sigma, \rho) of finite or cofinite sets where the problem is non-trivial, and any ε>0\varepsilon>0, a (cσ,ρε)twnO(1)(c_{\sigma,\rho}-\varepsilon)^{\sf tw}\cdot n^{O(1)}-algorithm counting the number of (σ,ρ)(\sigma,\rho)-sets would violate the Counting Strong Exponential-Time Hypothesis (#SETH). For finite sets σ\sigma and ρ\rho, our lower bounds also extend to the decision version, showing that our algorithms are optimal in this setting as well. In contrast, for many cofinite sets, we show that further significant improvements for the decision and optimization versions are possible using the technique of representative sets

    Independent transversal total domination versus total domination in trees

    Get PDF
    A subset of vertices in a graph G is a total dominating set if every vertex in G is adjacent to at least one vertex in this subset. The total domination number of G is the minimum cardinality of any total dominating set in G and is denoted by gamma(t)(G). A total dominating set of G having nonempty intersection with all the independent sets of maximum cardinality in G is an independent transversal total dominating set. The minimum cardinality of any independent transversal total dominating set is denoted by gamma(u) (G). Based on the fact that for any tree T, gamma(t) (T) <= gamma(u) (T) <= gamma(t) (T) + 1, in this work we give several relationship(s) between gamma(u) (T) and gamma(t) (T) for trees T which are leading to classify the trees which are satisfying the equality in these bound

    In the complement of a dominating set

    Get PDF
    A set D of vertices of a graph G=(V,E) is a dominating set, if every vertex of D\V has at least one neighbor that belongs to D. The disjoint domination number of a graph G is the minimum cardinality of two disjoint dominating sets of G. We prove upper bounds for the disjoint domination number for graphs of minimum degree at least 2, for graphs of large minimum degree and for cubic graphs.A set T of vertices of a graph G=(V,E) is a total dominating set, if every vertex of G has at least one neighbor that belongs to T. We characterize graphs of minimum degree 2 without induced 5-cycles and graphs of minimum degree at least 3 that have a dominating set, a total dominating set, and a non-empty vertex set that are disjoint.A set I of vertices of a graph G=(V,E) is an independent set, if all vertices in I are not adjacent in G. We give a constructive characterization of trees that have a maximum independent set and a minimum dominating set that are disjoint and we show that the corresponding decision problem is NP-hard for general graphs. Additionally, we prove several structural and hardness results concerning pairs of disjoint sets in graphs which are dominating, independent, or both. Furthermore, we prove lower bounds for the maximum cardinality of an independent set of graphs with specifed odd girth and small average degree.A connected graph G has spanning tree congestion at most s, if G has a spanning tree T such that for every edge e of T the edge cut defined in G by the vertex sets of the two components of T-e contains at most s edges. We prove that every connected graph of order n has spanning tree congestion at most n^(3/2) and we show that the corresponding decision problem is NP-hard

    Reconfiguration of Dominating Sets

    Full text link
    We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph GG is a set SS of vertices such that each vertex is either in SS or has a neighbour in SS. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions ss and tt such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of kk, we consider properties of Dk(G)D_k(G), the graph consisting of a vertex for each dominating set of size at most kk and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that DΓ(G)+1(G)D_{\Gamma(G)+1}(G) is not necessarily connected, for Γ(G)\Gamma(G) the maximum cardinality of a minimal dominating set in GG. The result holds even when graphs are constrained to be planar, of bounded tree-width, or bb-partite for b3b \ge 3. Moreover, we construct an infinite family of graphs such that Dγ(G)+1(G)D_{\gamma(G)+1}(G) has exponential diameter, for γ(G)\gamma(G) the minimum size of a dominating set. On the positive side, we show that Dnm(G)D_{n-m}(G) is connected and of linear diameter for any graph GG on nn vertices having at least m+1m+1 independent edges.Comment: 12 pages, 4 figure
    corecore