81 research outputs found

    Object polygonization in traffic scenes using small Eigenvalue analysis

    Get PDF
    Shape polygonization is an effective and convenient method to compress the storage requirements of a shape curve. Polygonal approximation offers an invariant representation of local properties even after digitization of a shape curve. In this paper, we propose to use universal threshold for polygonal approximation of any two-dimensional object boundary by exploiting the strength of small eigenvalues. We also propose to adapt the Jaccard Index as a metric to measure the effectiveness of shape polygonization. In the context of this paper, we have conducted extensive experiments on the semantically segmented images from Cityscapes dataset to polygonize the objects in the traffic scenes. Further, to corroborate the efficacy of the proposed method, experiments on the MPEG-7 shape database are conducted. Results obtained by the proposed technique are encouraging and can enable greater compression of annotation documents. This is particularly critical in the domain of instrumented vehicles where large volumes of high quality video must be exhaustively annotated without loss of accuracy and least man-hours

    Polygonal Approximation of Digital Planar Curve Using Novel Significant Measure

    Get PDF
    This chapter presents an iterative smoothing technique for polygonal approximation of digital image boundary. The technique starts with finest initial segmentation points of a curve. The contribution of initially segmented points toward preserving the original shape of the image boundary is determined by computing the significant measure of every initial segmentation point that is sensitive to sharp turns, which may be missed easily when conventional significant measures are used for detecting dominant points. The proposed method differentiates between the situations when a point on the curve between two points on a curve projects directly upon the line segment or beyond this line segment. It not only identifies these situations but also computes its significant contribution for these situations differently. This situation-specific treatment allows preservation of points with high curvature even as revised set of dominant points are derived. Moreover, the technique may find its application in parallel manipulators in detecting target boundary of an image with varying scale. The experimental results show that the proposed technique competes well with the state-of-the-art techniques

    Fast and robust dominant point detection on digital curves

    Get PDF
    International audienceA new and fast method for dominant point detection and polygonal representation of a discrete curve is proposed. Starting from results of discrete geometry, the notion of maximal blurred segment of width v has been proposed, well adapted to possibly noisy and/or not connected curves. For a given width, the dominant points of a curve C are deduced from the sequence of maximal blurred segments of C in O(nlog^2n) time. Comparisons with other methods of the literature prove the efficiency of our approach

    Polygonal Representation of Digital Curves

    Get PDF

    A discrete geometry approach for dominant point detection

    Get PDF
    International audienceWe propose two fast methods for dominant point detection and polygonal representation of noisy and possibly disconnected curves based on a study of the decomposition of the curve into the sequence of maximal blurred segments \cite{ND07}. Starting from results of discrete geometry \cite{FT99,Deb05}, the notion of maximal blurred segment of width ν\nu \cite{ND07} has been proposed, well adapted to noisy curves. The first method uses a fixed parameter that is the width of considered maximal blurred segments. The second one is proposed based on a multi-width approach to obtain a non-parametric method that uses no threshold for working with noisy curves. Comparisons with other methods in the literature prove the efficiency of our approach. Thanks to a recent result \cite{FF08} concerning the construction of the sequence of maximal blurred segments, the complexity of the proposed methods is O(nlogn)O(n\log n). An application of vectorization is also given in this paper

    A novel framework for making dominant point detection methods non-parametric

    Get PDF
    Most dominant point detection methods require heuristically chosen control parameters. One of the commonly used control parameter is maximum deviation. This paper uses a theoretical bound of the maximum deviation of pixels obtained by digitization of a line segment for constructing a general framework to make most dominant point detection methods non-parametric. The derived analytical bound of the maximum deviation can be used as a natural bench mark for the line fitting algorithms and thus dominant point detection methods can be made parameter-independent and non-heuristic. Most methods can easily incorporate the bound. This is demonstrated using three categorically different dominant point detection methods. Such non-parametric approach retains the characteristics of the digital curve while providing good fitting performance and compression ratio for all the three methods using a variety of digital, non-digital, and noisy curves

    Efficient dominant point detection based on discrete curve structure

    Get PDF
    International audienceIn this paper, we investigate the problem of dominant point detection on digital curves which consists in finding points with local maximum curvature. Thanks to previous studies of the decomposition of curves into sequence of discrete structures [5–7], namely maximal blurred segments of width [13], an initial algorithm has been proposed in [14] to detect dominant points. However, an heuristic strategy is used to identify the dominant points. We now propose a modified algorithm without heuristics but a simple measure of angle. In addition, an application of polygonal simplification is as well proposed to reduce the number of detected dominant points by associating a weight to each of them. The experimental results demonstrate the e and robustness of the proposed method

    Methods for Ellipse Detection from Edge Maps of Real Images

    Get PDF

    A new thresholding approach for automatic generation of polygonal approximations

    Get PDF
    The present paper proposes a new algorithm for automatic generation of polygonal approximations of 2D closed contours based on a new thresholding method. The new proposal computes the signi cance level of the contour points using a new symmetric version of the well-known Ramer, Douglas - Peucker method, and then a new Adaptive method is applied to threshold the normalized signi cance level of the contour points to generate the polygonal approximation. The experiments have shown that the new algorithm has good performance for generating polygonal approximations of 2D closed contours. Futhermore, the new algorithm does not require any parameter to be tuned
    corecore