2,577 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Towards Visual Ego-motion Learning in Robots

    Full text link
    Many model-based Visual Odometry (VO) algorithms have been proposed in the past decade, often restricted to the type of camera optics, or the underlying motion manifold observed. We envision robots to be able to learn and perform these tasks, in a minimally supervised setting, as they gain more experience. To this end, we propose a fully trainable solution to visual ego-motion estimation for varied camera optics. We propose a visual ego-motion learning architecture that maps observed optical flow vectors to an ego-motion density estimate via a Mixture Density Network (MDN). By modeling the architecture as a Conditional Variational Autoencoder (C-VAE), our model is able to provide introspective reasoning and prediction for ego-motion induced scene-flow. Additionally, our proposed model is especially amenable to bootstrapped ego-motion learning in robots where the supervision in ego-motion estimation for a particular camera sensor can be obtained from standard navigation-based sensor fusion strategies (GPS/INS and wheel-odometry fusion). Through experiments, we show the utility of our proposed approach in enabling the concept of self-supervised learning for visual ego-motion estimation in autonomous robots.Comment: Conference paper; Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017, Vancouver CA; 8 pages, 8 figures, 2 table

    04251 -- Imaging Beyond the Pinhole Camera

    Get PDF
    From 13.06.04 to 18.06.04, the Dagstuhl Seminar 04251 ``Imaging Beyond the Pin-hole Camera. 12th Seminar on Theoretical Foundations of Computer Vision\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Exploring Motion Signatures for Vision-Based Tracking, Recognition and Navigation

    Get PDF
    As cameras become more and more popular in intelligent systems, algorithms and systems for understanding video data become more and more important. There is a broad range of applications, including object detection, tracking, scene understanding, and robot navigation. Besides the stationary information, video data contains rich motion information of the environment. Biological visual systems, like human and animal eyes, are very sensitive to the motion information. This inspires active research on vision-based motion analysis in recent years. The main focus of motion analysis has been on low level motion representations of pixels and image regions. However, the motion signatures can benefit a broader range of applications if further in-depth analysis techniques are developed. In this dissertation, we mainly discuss how to exploit motion signatures to solve problems in two applications: object recognition and robot navigation. First, we use bird species recognition as the application to explore motion signatures for object recognition. We begin with study of the periodic wingbeat motion of flying birds. To analyze the wing motion of a flying bird, we establish kinematics models for bird wings, and obtain wingbeat periodicity in image frames after the perspective projection. Time series of salient extremities on bird images are extracted, and the wingbeat frequency is acquired for species classification. Physical experiments show that the frequency based recognition method is robust to segmentation errors and measurement lost up to 30%. In addition to the wing motion, the body motion of the bird is also analyzed to extract the flying velocity in 3D space. An interacting multi-model approach is then designed to capture the combined object motion patterns and different environment conditions. The proposed systems and algorithms are tested in physical experiments, and the results show a false positive rate of around 20% with a low false negative rate close to zero. Second, we explore motion signatures for vision-based vehicle navigation. We discover that motion vectors (MVs) encoded in Moving Picture Experts Group (MPEG) videos provide rich information of the motion in the environment, which can be used to reconstruct the vehicle ego-motion and the structure of the scene. However, MVs suffer from high noise level. To handle the challenge, an error propagation model for MVs is first proposed. Several steps, including MV merging, plane-at-infinity elimination, and planar region extraction, are designed to further reduce noises. The extracted planes are used as landmarks in an extended Kalman filter (EKF) for simultaneous localization and mapping. Results show that the algorithm performs localization and plane mapping with a relative trajectory error below 5:1%. Exploiting the fact that MVs encodes both environment information and moving obstacles, we further propose to track moving objects at the same time of localization and mapping. This enables the two critical navigation functionalities, localization and obstacle avoidance, to be performed in a single framework. MVs are labeled as stationary or moving according to their consistency to geometric constraints. Therefore, the extracted planes are separated into moving objects and the stationary scene. Multiple EKFs are used to track the static scene and the moving objects simultaneously. In physical experiments, we show a detection rate of moving objects at 96:6% and a mean absolute localization error below 3:5 meters

    Recovering Heading for Visually-Guided Navigation

    Get PDF
    We present a model for recovering the direction of heading of an observer who is moving relative to a scene that may contain self-moving objects. The model builds upon an algorithm proposed by Rieger and Lawton (1985), which is based on earlier work by Longuet-Higgens and Prazdny (1981). The algorithm uses velocity differences computed in regions of high depth variation to estimate the location of the focus of expansion, which indicates the observer's heading direction. We relate the behavior of the proposed model to psychophysical observations regarding the ability of human observers to judge their heading direction, and show how the model can cope with self-moving objects in the environment. We also discuss this model in the broader context of a navigational system that performs tasks requiring rapid sensing and response through the interaction of simple task-specific routines
    • …
    corecore