57,730 research outputs found

    Periodic Motion Detection and Estimation via Space-Time Sampling

    Full text link
    A novel technique to detect and localize periodic movements in video is presented. The distinctive feature of the technique is that it requires neither feature tracking nor object segmentation. Intensity patterns along linear sample paths in space-time are used in estimation of period of object motion in a given sequence of frames. Sample paths are obtained by connecting (in space-time) sample points from regions of high motion magnitude in the first and last frames. Oscillations in intensity values are induced at time instants when an object intersects the sample path. The locations of peaks in intensity are determined by parameters of both cyclic object motion and orientation of the sample path with respect to object motion. The information about peaks is used in a least squares framework to obtain an initial estimate of these parameters. The estimate is further refined using the full intensity profile. The best estimate for the period of cyclic object motion is obtained by looking for consensus among estimates from many sample paths. The proposed technique is evaluated with synthetic videos where ground-truth is known, and with American Sign Language videos where the goal is to detect periodic hand motions.National Science Foundation (CNS-0202067, IIS-0308213, IIS-0329009); Office of Naval Research (N00014-03-1-0108

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    5G Positioning and Mapping with Diffuse Multipath

    Get PDF
    5G mmWave communication is useful for positioning due to the geometric connection between the propagation channel and the propagation environment. Channel estimation methods can exploit the resulting sparsity to estimate parameters(delay and angles) of each propagation path, which in turn can be exploited for positioning and mapping. When paths exhibit significant spread in either angle or delay, these methods breakdown or lead to significant biases. We present a novel tensor-based method for channel estimation that allows estimation of mmWave channel parameters in a non-parametric form. The method is able to accurately estimate the channel, even in the absence of a specular component. This in turn enables positioning and mapping using only diffuse multipath. Simulation results are provided to demonstrate the efficacy of the proposed approach

    Sensor enclosures: example application and implications for data coherence

    Get PDF
    Sensors deployed in natural environments, such as rivers, beaches and glaciers, experience large forces and damaging environmental conditions. Sensors need to be robust, securely operate for extended time periods and be readily relocated and serviced. The sensors must be housed in materials that mimic natural conditions of size, density, shape and roughness. We have developed an encasement system for sensors required to measure large forces experienced by mobile river sediment grains. Sensors are housed within two discrete cases that are rigidly conjoined. The inner case exactly fits the sensor, radio components and power source. This case can be mounted within outer cases of any larger size and can be precisely moulded to match the shapes of natural sediment. Total grain mass can be controlled by packing the outer case with dense material. Case design uses Solid-WorksTM software, and shape-matching involved 3D laser scanning of natural pebbles. The cases were printed using a HP DesignjetTM 3D printer that generates high precision parts that lock rigidly in place. The casings are watertight and robust. Laboratory testing produces accurate results over a wider range of accelerations than previously reported
    • …
    corecore