44,968 research outputs found

    Wavelet entropy as a measure of ventricular beat suppression from the electrocardiogram in atrial fibrillation

    Get PDF
    A novel method of quantifying the effectiveness of the suppression of ventricular activity from electrocardiograms (ECGs) in atrial fibrillation is proposed. The temporal distribution of the energy of wavelet coefficients is quantified by wavelet entropy at each ventricular beat. More effective ventricular activity suppression yields increased entropies at scales dominated by the ventricular and atrial components of the ECG. Two studies are undertaken to demonstrate the efficacy of the method: first, using synthesised ECGs with controlled levels of residual ventricular activity, and second, using patient recordings with ventricular activity suppressed by an average beat template subtraction algorithm. In both cases wavelet entropy is shown to be a good measure of the effectiveness of ventricular beat suppression

    A new weighted NMF algorithm for missing data interpolation and its application to speech enhancement

    Get PDF
    In this paper we present a novel weighted NMF (WNMF) algorithm for interpolating missing data. The proposed approach has a computational cost equivalent to that of standard NMF and, additionally, has the flexibility to control the degree of interpolation in the missing data regions. Existing WNMF methods do not offer this capability and, thereby, tend to overestimate the values in the masked regions. By constraining the estimates of the missing-data regions, the proposed approach allows for a better trade-off in the interpolation. We further demonstrate the applicability of WNMF and missing data estimation to the problem of speech enhancement. In this preliminary work, we consider the improvement obtainable by applying the proposed method to ideal binary mask-based gain functions. The instrumental quality metrics (PESQ and SNR) clearly indicate the added benefit of the missing data interpolation, compared to the output of the ideal binary mask. This preliminary work opens up novel possibilities not only in the field of speech enhancement but also, more generally, in the field of missing data interpolation using NMF

    Analysis of Dynamic Brain Imaging Data

    Get PDF
    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for non-stationarity in the data. Of particular note are (a) the development of a decomposition technique (`space-frequency singular value decomposition') that is shown to be a useful means of characterizing the image data, and (b) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources.Comment: 40 pages; 26 figures with subparts including 3 figures as .gif files. Originally submitted to the neuro-sys archive which was never publicly announced (was 9804003

    Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    Get PDF
    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1x_{1-x}Cox_{x})2_{2}B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit "hot spots" by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization due to these peculiar electronic mechanisms, which contrast starkly with those assumed in existing models.Comment: 9 pages, 10 figures (including supplemental material

    Rethinking CMB foregrounds: systematic extension of foreground parameterizations

    Full text link
    Future high-sensitivity measurements of the cosmic microwave background (CMB) anisotropies and energy spectrum will be limited by our understanding and modeling of foregrounds. Not only does more information need to be gathered and combined, but also novel approaches for the modeling of foregrounds, commensurate with the vast improvements in sensitivity, have to be explored. Here, we study the inevitable effects of spatial averaging on the spectral shapes of typical foreground components, introducing a moment approach, which naturally extends the list of foreground parameters that have to be determined through measurements or constrained by theoretical models. Foregrounds are thought of as a superposition of individual emitting volume elements along the line of sight and across the sky, which then are observed through an instrumental beam. The beam and line of sight averages are inevitable. Instead of assuming a specific model for the distributions of physical parameters, our method identifies natural new spectral shapes for each foreground component that can be used to extract parameter moments (e.g., mean, dispersion, cross-terms, etc.). The method is illustrated for the superposition of power-laws, free-free spectra, gray-body and modified blackbody spectra, but can be applied to more complicated fundamental spectral energy distributions. Here, we focus on intensity signals but the method can be extended to the case of polarized emission. The averaging process automatically produces scale-dependent spectral shapes and the moment method can be used to propagate the required information across scales in power spectrum estimates. The approach is not limited to applications to CMB foregrounds but could also be useful for the modeling of X-ray emission in clusters of galaxies.Comment: 19 pages, 8 figures, accepted by MNRAS, minor revision

    Noise Mitigation Analysis of a Pi-Filter for an Automotive Control Module

    Get PDF
    This paper has been reproduced on " InCompliance" magazine, May issue http://www.incompliancemag.com/ then "Issue Archive
    corecore