134 research outputs found

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Shoulder Muscular Fatigue From Static Posture Concurrently Reduces Cognitive Attentional Resources

    Get PDF
    Objective: The goal of this work is to determine whether muscular fatigue concurrently reduces cognitive attentional resources in technical tasks for healthy adults. Background: Muscular fatigue is common in the workplace but often dissociated with cognitive performance. A corpus of literature demonstrates a link between muscular fatigue and cognitive function, but few investigations demonstrate that the instigation of the former degrades the latter in a way that may affect technical task completion. For example, laparoscopic surgery increases muscular fatigue, which may risk attentional capacity reduction and undermine surgical outcomes. Method: A total of 26 healthy participants completed a dual-task cognitive assessment of attentional resources while concurrently statically fatiguing their shoulder musculature until volitional failure, in a similar loading pattern observed in laparoscopic procedures. Continuous and discrete monitoring task performance was recorded to reflect attentional resources. Results: Electromyography of the anterior deltoid and descending trapezius, as well as self-assessment surveys indicated fatigue occurrence; continuous tracking error, tracking velocity, and response time significantly increased with muscular fatigue. Conclusion: Muscular fatigue concurrently degrades cognitive attentional resources. Application: Complex tasks that rely on muscular and cognitive performance should consider interventions to reduce muscular fatigue to also preserve cognitive performance

    Surgical Stress: The Muscle and Cognitive Demands of Robotic and Laparoscopic Surgery

    Get PDF
    Introduction: Surgeons are among the most at-risk professionals for work-related musculoskeletal decline and experience high mental demands. This study examined the electromyographic (EMG) and electroencephalographic (EEG) activities of surgeons during surgery. Methods: Surgeons who performed live laparoscopic (LS) and robotic (RS) surgeries underwent EMG and EEG measurements. Wireless EMG was used to measure muscle activation in 4 muscle groups bilaterally (biceps brachii, deltoid, upper trapezius, and latissimus dorsi), and an 8-channel wireless EEG device was used to measure cognitive demand. EMG and EEG recordings were completed simultaneously during (1) noncritical bowel dissection, (2) critical vessel dissection, and (3) dissection after vessel control. Robust ANOVA was used to compare the %MVCRMS and alpha power between LS and RS. Results: Thirteen male surgeons performed 26 LS and 28 RS. Muscle activation was significantly higher in the right deltoid (P = 0.006), upper trapezius (left, P = 0.041; right, P = 0.032), and latissimus dorsi (left, P = 0.003; right, P = 0.014) muscles in the LS group. There was greater muscle activation in the right biceps than in the left biceps in both surgical modalities (both P = 0.0001). There was a significant effect of the time of surgery on the EEG activity (P < 0.0001). A significantly greater cognitive demand was observed in the RS than in the LS with alpha, beta, theta, delta, and gamma (P = 0.002 – P <0.0001). Conclusions: These data suggest greater muscle demands in laparoscopic surgery, but greater cognitive demands in RS. This trial was registered at Clinicaltrials.gov (NCT04477746)

    Factors of Micromanipulation Accuracy and Learning

    No full text
    Micromanipulation refers to the manipulation under a microscope in order to perform delicate procedures. It is difficult for humans to manipulate objects accurately under a microscope due to tremor and imperfect perception, limiting performance. This project seeks to understand factors affecting accuracy in micromanipulation, and to propose strategies for learning improving accuracy. Psychomotor experiments were conducted using computer-controlled setups to determine how various feedback modalities and learning methods can influence micromanipulation performance. In a first experiment, static and motion accuracy of surgeons, medical students and non-medical students under different magniification levels and grip force settings were compared. A second experiment investigated whether the non-dominant hand placed close to the target can contribute to accurate pointing of the dominant hand. A third experiment tested a training strategy for micromanipulation using unstable dynamics to magnify motion error, a strategy shown to be decreasing deviation in large arm movements. Two virtual reality (VR) modules were then developed to train needle grasping and needle insertion tasks, two primitive tasks in a microsurgery suturing procedure. The modules provided the trainee with a visual display in stereoscopic view and information on their grip, tool position and angles. Using the VR module, a study examining effects of visual cues was conducted to train tool orientation. Results from these studies suggested that it is possible to learn and improve accuracy in micromanipulation using appropriate sensorimotor feedback and training

    Advances in Minimally Invasive Surgery

    Get PDF
    The minimally invasive approach in medicine is one of the most common areas of interest in surgery.Advances in Minimally Invasive Surgery describes the latest trends, indications, techniques, and approaches in minimally invasive surgery. It provides step-by-step instructions for both routine and diagnostic procedures via illustrations and video collection

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    Motor learning induced neuroplasticity in minimally invasive surgery

    Get PDF
    Technical skills in surgery have become more complex and challenging to acquire since the introduction of technological aids, particularly in the arena of Minimally Invasive Surgery. Additional challenges posed by reforms to surgical careers and increased public scrutiny, have propelled identification of methods to assess and acquire MIS technical skills. Although validated objective assessments have been developed to assess motor skills requisite for MIS, they poorly understand the development of expertise. Motor skills learning, is indirectly observable, an internal process leading to relative permanent changes in the central nervous system. Advances in functional neuroimaging permit direct interrogation of evolving patterns of brain function associated with motor learning due to the property of neuroplasticity and has been used on surgeons to identify the neural correlates for technical skills acquisition and the impact of new technology. However significant gaps exist in understanding neuroplasticity underlying learning complex bimanual MIS skills. In this thesis the available evidence on applying functional neuroimaging towards assessment and enhancing operative performance in the field of surgery has been synthesized. The purpose of this thesis was to evaluate frontal lobe neuroplasticity associated with learning a complex bimanual MIS skill using functional near-infrared spectroscopy an indirect neuroimaging technique. Laparoscopic suturing and knot-tying a technically challenging bimanual skill is selected to demonstrate learning related reorganisation of cortical behaviour within the frontal lobe by shifts in activation from the prefrontal cortex (PFC) subserving attention to primary and secondary motor centres (premotor cortex, supplementary motor area and primary motor cortex) in which motor sequences are encoded and executed. In the cross-sectional study, participants of varying expertise demonstrate frontal lobe neuroplasticity commensurate with motor learning. The longitudinal study involves tracking evolution in cortical behaviour of novices in response to receipt of eight hours distributed training over a fortnight. Despite novices achieving expert like performance and stabilisation on the technical task, this study demonstrates that novices displayed persistent PFC activity. This study establishes for complex bimanual tasks, that improvements in technical performance do not accompany a reduced reliance in attention to support performance. Finally, least-squares support vector machine is used to classify expertise based on frontal lobe functional connectivity. Findings of this thesis demonstrate the value of interrogating cortical behaviour towards assessing MIS skills development and credentialing.Open Acces

    Visual-Motor Learning in Minimally Invasive Surgery

    Get PDF
    The purpose of this thesis was to develop an in-depth understanding of motor control in surgery. This was achieved by applying current theories of sensorimotor learning and developing a novel experimental approach. A survey of expert opinion and a review of the existing literature identified several issues related to human performance and MIS. The approach of this thesis combined existing surgical training tools with state-of-the-art technology and adapted rigorous experimental psychology techniques (grounded in the principles of sensorimotor learning) within a controlled laboratory environment. Existing technology was incorporated into surgical scenarios via the Kinematic Assessment Tool - an experimentally validated, powerful and portable system capable of providing accurate and repeatable measures of visual-motor performance. The Kinematic Assessment Tool (KAT) was first established as an appropriate means of assessing visual-motor performance, subsequently the KAT was assessed as valid when assessing MIS performance. Following this, the system was used to investigate whether the principles of ‘structural learning’ could be applied to MIS. The final experiment investigated if there is any benefit of a standardised, repeatable laparoscopic warm-up to MIS performance. These experiments demonstrated that the KAT system combined with other existing technologies, can be used to investigate visual-motor performance. The results suggested that learning the control dynamics of the surgical instruments and variability in training is beneficial when presented with novel but similar tasks. These findings are consistent with structural learning theory. This thesis should inform current thinking on MIS training and performance and the future development of simulators with more emphasis on introducing variability within tasks during training. Further investigation of the role of structural learning in MIS is required

    TRAINING AND ASSESSMENT OF HAND-EYE COORDINATION WITH ELECTROENCEPHALOGRAPHY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore