2,792 research outputs found

    Dominance Measures for Multi-Objective Simulated Annealing

    Get PDF
    Copyright © 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Simulated annealing (SA) is a provably convergent optimiser for single-objective (SO) problems. Previously proposed MO extensions have mostly taken the form of an SO SA optimising a composite function of the objectives. We propose an MO SA utilising the relative dominance of a solution as the system energy for optimisation, eliminating problems associated with composite objective functions. We also propose a method for choosing perturbation scalings promoting search both towards and across the Pareto front.We illustrate the SA's performance on standard test problems. The new SA is shown to promote rapid convergence to the true Pareto front with a good coverage of points across it

    Dominance-Based Multiobjective Simulated Annealing

    Get PDF
    Copyright © 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Simulated annealing is a provably convergent optimizer for single-objective problems. Previously proposed multiobjective extensions have mostly taken the form of a single-objective simulated annealer optimizing a composite function of the objectives. We propose a multiobjective simulated annealer utilizing the relative dominance of a solution as the system energy for optimization, eliminating problems associated with composite objective functions. We also propose a method for choosing perturbation scalings promoting search both towards and across the Pareto front. We illustrate the simulated annealer's performance on a suite of standard test problems and provide comparisons with another multiobjective simulated annealer and the NSGA-II genetic algorithm. The new simulated annealer is shown to promote rapid convergence to the true Pareto front with a good coverage of solutions across it comparing favorably with the other algorithms. An application of the simulated annealer to an industrial problem, the optimization of a code-division-multiple access (CDMA) mobile telecommunications network's air interface, is presented and the simulated annealer is shown to generate nondominated solutions with an even and dense coverage that outperforms single objective genetic algorithm optimizers

    An adaptive evolutionary multi-objective approach based on simulated annealing

    Get PDF
    A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search towards the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well-established multi-objective metaheuristic algorithms on both the (constrained)multi-objective knapsack problemand the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated

    Effective and efficient algorithm for multiobjective optimization of hydrologic models

    Get PDF
    Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity

    Knowledge-Informed Simulated Annealing for Spatial Allocation Problems

    Get PDF

    SIMULATION-BASED OPTIMIZATION OF CONSTRUCTION SCHEDULES BY USING PARETO SIMULATED ANNEALING

    Get PDF
    Within the scheduling of construction projects, different, partly conflicting objectives have to be considered. The specification of an efficient construction schedule is a challenging task, which leads to a NP-hard multi-criteria optimization problem. In the past decades, so-called metaheuristics have been developed for scheduling problems to find near-optimal solutions in reasonable time. This paper presents a Simulated Annealing concept to determine near-optimal construction schedules. Simulated Annealing is a well-known metaheuristic optimization approach for solving complex combinatorial problems. To enable dealing with several optimization objectives the Pareto optimization concept is applied. Thus, the optimization result is a set of Pareto-optimal schedules, which can be analyzed for selecting exactly one practicable and reasonable schedule. A flexible constraint-based simulation approach is used to generate possible neighboring solutions very quickly during the optimization process. The essential aspects of the developed Pareto Simulated Annealing concept are presented in detail
    corecore