72,223 research outputs found

    Domains via approximation operators

    Full text link
    In this paper, we tailor-make new approximation operators inspired by rough set theory and specially suited for domain theory. Our approximation operators offer a fresh perspective to existing concepts and results in domain theory, but also reveal ways to establishing novel domain-theoretic results. For instance, (1) the well-known interpolation property of the way-below relation on a continuous poset is equivalent to the idempotence of a certain set-operator; (2) the continuity of a poset can be characterized by the coincidence of the Scott closure operator and the upper approximation operator induced by the way below relation; (3) meet-continuity can be established from a certain property of the topological closure operator. Additionally, we show how, to each approximating relation, an associated order-compatible topology can be defined in such a way that for the case of a continuous poset the topology associated to the way-below relation is exactly the Scott topology. A preliminary investigation is carried out on this new topology.Comment: 17 pages; 1figure, Domains XII Worksho

    The automatic solution of partial differential equations using a global spectral method

    Full text link
    A spectral method for solving linear partial differential equations (PDEs) with variable coefficients and general boundary conditions defined on rectangular domains is described, based on separable representations of partial differential operators and the one-dimensional ultraspherical spectral method. If a partial differential operator is of splitting rank 22, such as the operator associated with Poisson or Helmholtz, the corresponding PDE is solved via a generalized Sylvester matrix equation, and a bivariate polynomial approximation of the solution of degree (nx,ny)(n_x,n_y) is computed in O((nxny)3/2)\mathcal{O}((n_x n_y)^{3/2}) operations. Partial differential operators of splitting rank 3\geq 3 are solved via a linear system involving a block-banded matrix in O(min(nx3ny,nxny3))\mathcal{O}(\min(n_x^{3} n_y,n_x n_y^{3})) operations. Numerical examples demonstrate the applicability of our 2D spectral method to a broad class of PDEs, which includes elliptic and dispersive time-evolution equations. The resulting PDE solver is written in MATLAB and is publicly available as part of CHEBFUN. It can resolve solutions requiring over a million degrees of freedom in under 6060 seconds. An experimental implementation in the Julia language can currently perform the same solve in 1010 seconds.Comment: 22 page

    Multipatch Approximation of the de Rham Sequence and its Traces in Isogeometric Analysis

    Full text link
    We define a conforming B-spline discretisation of the de Rham complex on multipatch geometries. We introduce and analyse the properties of interpolation operators onto these spaces which commute w.r.t. the surface differential operators. Using these results as a basis, we derive new convergence results of optimal order w.r.t. the respective energy spaces and provide approximation properties of the spline discretisations of trace spaces for application in the theory of isogeometric boundary element methods. Our analysis allows for a straightforward generalisation to finite element methods
    corecore