302 research outputs found

    The enriched Vietoris monad on representable spaces

    Full text link
    Employing a formal analogy between ordered sets and topological spaces, over the past years we have investigated a notion of cocompleteness for topological, approach and other kind of spaces. In this new context, the down-set monad becomes the filter monad, cocomplete ordered set translates to continuous lattice, distributivity means disconnectedness, and so on. Curiously, the dual(?) notion of completeness does not behave as the mirror image of the one of cocompleteness; and in this paper we have a closer look at complete spaces. In particular, we construct the "up-set monad" on representable spaces (in the sense of L. Nachbin for topological spaces, respectively C. Hermida for multicategories); we show that this monad is of Kock-Z\"oberlein type; we introduce and study a notion of weighted limit similar to the classical notion for enriched categories; and we describe the Kleisli category of our "up-set monad". We emphasize that these generic categorical notions and results can be indeed connected to more "classical" topology: for topological spaces, the "up-set monad" becomes the upper Vietoris monad, and the statement "XX is totally cocomplete if and only if XopX^\mathrm{op} is totally complete" specialises to O. Wyler's characterisation of the algebras of the Vietoris monad on compact Hausdorff spaces.Comment: One error in Example 1.9 is corrected; Section 4 works now without the assuming core-compactnes

    Rings, modules, and algebras in infinite loop space theory

    Get PDF
    We give a new construction of the algebraic KK-theory of small permutative categories that preserves multiplicative structure, and therefore allows us to give a unified treatment of rings, modules, and algebras in both the input and output. This requires us to define multiplicative structure on the category of small permutative categories. The framework we use is the concept of multicategory, a generalization of symmetric monoidal category that precisely captures the multiplicative structure we have present at all stages of the construction. Our method ends up in Smith's category of symmetric spectra, with an intermediate stop at a new category that may be of interest in its own right, whose objects we call symmetric functors.Comment: 59 pages, 1 figur

    Categories and Types for Axiomatic Domain Theory

    Get PDF
    Submitted for the degree of Doctor of Philosophy, University of londo

    Real Algebraic Geometry With A View Toward Systems Control and Free Positivity

    Get PDF
    New interactions between real algebraic geometry, convex optimization and free non-commutative geometry have recently emerged, and have been the subject of numerous international meetings. The aim of the workshop was to bring together experts, as well as young researchers, to investigate current key questions at the interface of these fields, and to explore emerging interdisciplinary applications

    Homotopy theory for algebras over polynomial monads

    Full text link
    We study the existence and left properness of transferred model structures for "monoid-like" objects in monoidal model categories. These include genuine monoids, but also all kinds of operads as for instance symmetric, cyclic, modular, higher operads, properads and PROP's. All these structures can be realised as algebras over polynomial monads. We give a general condition for a polynomial monad which ensures the existence and (relative) left properness of a transferred model structure for its algebras. This condition is of a combinatorial nature and singles out a special class of polynomial monads which we call tame polynomial. Many important monads are shown to be tame polynomial.Comment: Final version. Remark 5.16 extended. Bibliography complete
    corecore