7,103 research outputs found

    Computing hypergeometric functions rigorously

    Get PDF
    We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1{}_0F_1, 1F1{}_1F_1, 2F1{}_2F_1 and 2F0{}_2F_0 (or the Kummer UU-function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software, and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq{}_pF_q and computation of high-order parameter derivatives.Comment: v2: corrected example in section 3.1; corrected timing data for case E-G in section 8.5 (table 6, figure 2); adjusted paper siz

    Toward accurate polynomial evaluation in rounded arithmetic

    Get PDF
    Given a multivariate real (or complex) polynomial pp and a domain D\cal D, we would like to decide whether an algorithm exists to evaluate p(x)p(x) accurately for all x∈Dx \in {\cal D} using rounded real (or complex) arithmetic. Here ``accurately'' means with relative error less than 1, i.e., with some correct leading digits. The answer depends on the model of rounded arithmetic: We assume that for any arithmetic operator op(a,b)op(a,b), for example a+ba+b or a⋅ba \cdot b, its computed value is op(a,b)⋅(1+δ)op(a,b) \cdot (1 + \delta), where ∣δ∣| \delta | is bounded by some constant ϵ\epsilon where 0<ϵ≪10 < \epsilon \ll 1, but δ\delta is otherwise arbitrary. This model is the traditional one used to analyze the accuracy of floating point algorithms.Our ultimate goal is to establish a decision procedure that, for any pp and D\cal D, either exhibits an accurate algorithm or proves that none exists. In contrast to the case where numbers are stored and manipulated as finite bit strings (e.g., as floating point numbers or rational numbers) we show that some polynomials pp are impossible to evaluate accurately. The existence of an accurate algorithm will depend not just on pp and D\cal D, but on which arithmetic operators and which constants are are available and whether branching is permitted. Toward this goal, we present necessary conditions on pp for it to be accurately evaluable on open real or complex domains D{\cal D}. We also give sufficient conditions, and describe progress toward a complete decision procedure. We do present a complete decision procedure for homogeneous polynomials pp with integer coefficients, {\cal D} = \C^n, and using only the arithmetic operations ++, −- and ⋅\cdot.Comment: 54 pages, 6 figures; refereed version; to appear in Foundations of Computational Mathematics: Santander 2005, Cambridge University Press, March 200

    Computability and Algorithmic Complexity in Economics

    Get PDF
    This is an outline of the origins and development of the way computability theory and algorithmic complexity theory were incorporated into economic and finance theories. We try to place, in the context of the development of computable economics, some of the classics of the subject as well as those that have, from time to time, been credited with having contributed to the advancement of the field. Speculative thoughts on where the frontiers of computable economics are, and how to move towards them, conclude the paper. In a precise sense - both historically and analytically - it would not be an exaggeration to claim that both the origins of computable economics and its frontiers are defined by two classics, both by Banach and Mazur: that one page masterpiece by Banach and Mazur ([5]), built on the foundations of Turing’s own classic, and the unpublished Mazur conjecture of 1928, and its unpublished proof by Banach ([38], ch. 6 & [68], ch. 1, #6). For the undisputed original classic of computable economics is Rabinís effectivization of the Gale-Stewart game ([42];[16]); the frontiers, as I see them, are defined by recursive analysis and constructive mathematics, underpinning computability over the computable and constructive reals and providing computable foundations for the economist’s Marshallian penchant for curve-sketching ([9]; [19]; and, in general, the contents of Theoretical Computer Science, Vol. 219, Issue 1-2). The former work has its roots in the Banach-Mazur game (cf. [38], especially p.30), at least in one reading of it; the latter in ([5]), as well as other, earlier, contributions, not least by Brouwer.

    The exponentially convergent trapezoidal rule

    Get PDF
    It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators
    • …
    corecore