325 research outputs found

    Utilizing Provenance in Reusable Research Objects

    Full text link
    Science is conducted collaboratively, often requiring the sharing of knowledge about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. Computational provenance is often the key to enable such reuse. In this paper, we show how reusable research objects can utilize provenance to correctly repeat a previous reference execution, to construct a subset of a research object for partial reuse, and to reuse existing contents of a research object for modified reuse. We describe two methods to summarize provenance that aid in understanding the contents and past executions of a research object. The first method obtains a process-view by collapsing low-level system information, and the second method obtains a summary graph by grouping related nodes and edges with the goal to obtain a graph view similar to application workflow. Through detailed experiments, we show the efficacy and efficiency of our algorithms.Comment: 25 page

    From scientific workflow patterns to 5-star linked open data

    Get PDF
    International audienceScientific Workflow management systems have been largely adopted by data-intensive science communities. Many efforts have been dedicated to the representation and exploitation of prove-nance to improve reproducibility in data-intensive sciences. However , few works address the mining of provenance graphs to annotate the produced data with domain-specific context for better interpretation and sharing of results. In this paper, we propose PoeM, a lightweight framework for mining provenance in scientific workflows. PoeM allows to produce linked in silico experiment reports based on workflow runs. PoeM leverages semantic web technologies and reference vocabularies (PROV-O, P-Plan) to generate provenance mining rules and finally assemble linked scientific experiment reports (Micropublications, Experimental Factor Ontology). Preliminary experiments demonstrate that PoeM enables the querying and sharing of Galaxy 1-processed genomic data as 5-star linked datasets

    Secure Diagnostics And Forensics With Network Provenance

    Get PDF
    In large-scale networks, many things can go wrong: routers can be misconfigured, programs can be buggy, and computers can be compromised by an attacker. As a result, there is a constant need to perform network diagnostics and forensics. In this dissertation, we leverage the concept of provenance to build better support for diagnostic and forensic tasks. At a high level, provenance tracks causality between network states and events, and produces a detailed explanation of any event of interest, which makes it a good starting point for investigating network problems. However, in order to use provenance for network diagnostics and forensics, several challenges need to be addressed. First, existing provenance systems cannot provide security properties on high-speed network traffic, because the cryptographic operations would cause enormous overhead when the data rates are high. To address this challenge, we design secure packet provenance, a system that comes with a novel lightweight security protocol, to maintain secure provenance with low overhead. Second, in large-scale distributed systems, the provenance of a network event can be quite complex, so it is still challenging to identify the problem root cause from the complex provenance. To address this challenge, we design differential provenance, which can identify a symptom event’s root cause by reasoning about the differences between its provenance and the provenance of a similar “reference” event. Third, provenance can only explain why a current network state came into existence, but by itself, it does not reason about changes to the network state to fix a problem. To provide operators with more diagnostic support, we design causal networks – a generalization of network provenance – to reason about network repairs that can avoid undesirable side effects in the network. Causal networks can encode multiple diagnostic goals in the same data structure, and, therefore, generate repairs that satisfy multiple constraints simultaneously. We have applied these techniques to Software-Defined Networks, Hadoop MapReduce, as well as the Internet’s data plane. Our evaluation with real-world traffic traces and network topologies shows that our systems can run with reasonable overhead, and that they can accurately identify root causes of practical problems and generate repairs without causing collateral damage

    A provenance-based semantic approach to support understandability, reproducibility, and reuse of scientific experiments

    Get PDF
    Understandability and reproducibility of scientific results are vital in every field of science. Several reproducibility measures are being taken to make the data used in the publications findable and accessible. However, there are many challenges faced by scientists from the beginning of an experiment to the end in particular for data management. The explosive growth of heterogeneous research data and understanding how this data has been derived is one of the research problems faced in this context. Interlinking the data, the steps and the results from the computational and non-computational processes of a scientific experiment is important for the reproducibility. We introduce the notion of end-to-end provenance management'' of scientific experiments to help scientists understand and reproduce the experimental results. The main contributions of this thesis are: (1) We propose a provenance modelREPRODUCE-ME'' to describe the scientific experiments using semantic web technologies by extending existing standards. (2) We study computational reproducibility and important aspects required to achieve it. (3) Taking into account the REPRODUCE-ME provenance model and the study on computational reproducibility, we introduce our tool, ProvBook, which is designed and developed to demonstrate computational reproducibility. It provides features to capture and store provenance of Jupyter notebooks and helps scientists to compare and track their results of different executions. (4) We provide a framework, CAESAR (CollAborative Environment for Scientific Analysis with Reproducibility) for the end-to-end provenance management. This collaborative framework allows scientists to capture, manage, query and visualize the complete path of a scientific experiment consisting of computational and non-computational steps in an interoperable way. We apply our contributions to a set of scientific experiments in microscopy research projects

    Automatic Root Cause Analysis via Large Language Models for Cloud Incidents

    Full text link
    Ensuring the reliability and availability of cloud services necessitates efficient root cause analysis (RCA) for cloud incidents. Traditional RCA methods, which rely on manual investigations of data sources such as logs and traces, are often laborious, error-prone, and challenging for on-call engineers. In this paper, we introduce RCACopilot, an innovative on-call system empowered by the large language model for automating RCA of cloud incidents. RCACopilot matches incoming incidents to corresponding incident handlers based on their alert types, aggregates the critical runtime diagnostic information, predicts the incident's root cause category, and provides an explanatory narrative. We evaluate RCACopilot using a real-world dataset consisting of a year's worth of incidents from Microsoft. Our evaluation demonstrates that RCACopilot achieves RCA accuracy up to 0.766. Furthermore, the diagnostic information collection component of RCACopilot has been successfully in use at Microsoft for over four years

    Doctor of Philosophy

    Get PDF
    dissertationServing as a record of what happened during a scientific process, often computational, provenance has become an important piece of computing. The importance of archiving not only data and results but also the lineage of these entities has led to a variety of systems that capture provenance as well as models and schemas for this information. Despite significant work focused on obtaining and modeling provenance, there has been little work on managing and using this information. Using the provenance from past work, it is possible to mine common computational structure or determine differences between executions. Such information can be used to suggest possible completions for partial workflows, summarize a set of approaches, or extend past work in new directions. These applications require infrastructure to support efficient queries and accessible reuse. In order to support knowledge discovery and reuse from provenance information, the management of those data is important. One component of provenance is the specification of the computations; workflows provide structured abstractions of code and are commonly used for complex tasks. Using change-based provenance, it is possible to store large numbers of similar workflows compactly. This storage also allows efficient computation of differences between specifications. However, querying for specific structure across a large collection of workflows is difficult because comparing graphs depends on computing subgraph isomorphism which is NP-Complete. Graph indexing methods identify features that help distinguish graphs of a collection to filter results for a subgraph containment query and reduce the number of subgraph isomorphism computations. For provenance, this work extends these methods to work for more exploratory queries and collections with significant overlap. However, comparing workflow or provenance graphs may not require exact equality; a match between two graphs may allow paired nodes to be similar yet not equivalent. This work presents techniques to better correlate graphs to help summarize collections. Using this infrastructure, provenance can be reused so that users can learn from their own and others' history. Just as textual search has been augmented with suggested completions based on past or common queries, provenance can be used to suggest how computations can be completed or which steps might connect to a given subworkflow. In addition, provenance can help further science by accelerating publication and reuse. By incorporating provenance into publications, authors can more easily integrate their results, and readers can more easily verify and repeat results. However, reusing past computations requires maintaining stronger associations with any input data and underlying code as well as providing paths for migrating old work to new hardware or algorithms. This work presents a framework for maintaining data and code as well as supporting upgrades for workflow computations

    Sharing interoperable workflow provenance: A review of best practices and their practical application in CWLProv

    Get PDF
    Background: The automation of data analysis in the form of scientific workflows has become a widely adopted practice in many fields of research. Computationally driven data-intensive experiments using workflows enable Automation, Scaling, Adaption and Provenance support (ASAP). However, there are still several challenges associated with the effective sharing, publication and reproducibility of such workflows due to the incomplete capture of provenance and lack of interoperability between different technical (software) platforms. Results: Based on best practice recommendations identified from literature on workflow design, sharing and publishing, we define a hierarchical provenance framework to achieve uniformity in the provenance and support comprehensive and fully re-executable workflows equipped with domain-specific information. To realise this framework, we present CWLProv, a standard-based format to represent any workflow-based computational analysis to produce workflow output artefacts that satisfy the various levels of provenance. We utilise open source community-driven standards; interoperable workflow definitions in Common Workflow Language (CWL), structured provenance representation using the W3C PROV model, and resource aggregation and sharing as workflow-centric Research Objects (RO) generated along with the final outputs of a given workflow enactment. We demonstrate the utility of this approach through a practical implementation of CWLProv and evaluation using real-life genomic workflows developed by independent groups. Conclusions: The underlying principles of the standards utilised by CWLProv enable semantically-rich and executable Research Objects that capture computational workflows with retrospective provenance such that any platform supporting CWL will be able to understand the analysis, re-use the methods for partial re-runs, or reproduce the analysis to validate the published findings.Submitted to GigaScience (GIGA-D-18-00483

    Big Data Analytics in Static and Streaming Provenance

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing,, 2016With recent technological and computational advances, scientists increasingly integrate sensors and model simulations to understand spatial, temporal, social, and ecological relationships at unprecedented scale. Data provenance traces relationships of entities over time, thus providing a unique view on over-time behavior under study. However, provenance can be overwhelming in both volume and complexity; the now forecasting potential of provenance creates additional demands. This dissertation focuses on Big Data analytics of static and streaming provenance. It develops filters and a non-preprocessing slicing technique for in-situ querying of static provenance. It presents a stream processing framework for online processing of provenance data at high receiving rate. While the former is sufficient for answering queries that are given prior to the application start (forward queries), the latter deals with queries whose targets are unknown beforehand (backward queries). Finally, it explores data mining on large collections of provenance and proposes a temporal representation of provenance that can reduce the high dimensionality while effectively supporting mining tasks like clustering, classification and association rules mining; and the temporal representation can be further applied to streaming provenance as well. The proposed techniques are verified through software prototypes applied to Big Data provenance captured from computer network data, weather models, ocean models, remote (satellite) imagery data, and agent-based simulations of agricultural decision making

    NLP-Based Techniques for Cyber Threat Intelligence

    Full text link
    In the digital era, threat actors employ sophisticated techniques for which, often, digital traces in the form of textual data are available. Cyber Threat Intelligence~(CTI) is related to all the solutions inherent to data collection, processing, and analysis useful to understand a threat actor's targets and attack behavior. Currently, CTI is assuming an always more crucial role in identifying and mitigating threats and enabling proactive defense strategies. In this context, NLP, an artificial intelligence branch, has emerged as a powerful tool for enhancing threat intelligence capabilities. This survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence. It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets. It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI. Finally, the challenges and limitations of NLP in threat intelligence are exhaustively examined, including data quality issues and ethical considerations. This survey draws a complete framework and serves as a valuable resource for security professionals and researchers seeking to understand the state-of-the-art NLP-based threat intelligence techniques and their potential impact on cybersecurity
    • …
    corecore