10,720 research outputs found

    Towards a Domain Specific Language for a Scene Graph based Robotic World Model

    Full text link
    Robot world model representations are a vital part of robotic applications. However, there is no support for such representations in model-driven engineering tool chains. This work proposes a novel Domain Specific Language (DSL) for robotic world models that are based on the Robot Scene Graph (RSG) approach. The RSG-DSL can express (a) application specific scene configurations, (b) semantic scene structures and (c) inputs and outputs for the computational entities that are loaded into an instance of a world model.Comment: Presented at DSLRob 2013 (arXiv:cs/1312.5952

    Flow-based Influence Graph Visual Summarization

    Full text link
    Visually mining a large influence graph is appealing yet challenging. People are amazed by pictures of newscasting graph on Twitter, engaged by hidden citation networks in academics, nevertheless often troubled by the unpleasant readability of the underlying visualization. Existing summarization methods enhance the graph visualization with blocked views, but have adverse effect on the latent influence structure. How can we visually summarize a large graph to maximize influence flows? In particular, how can we illustrate the impact of an individual node through the summarization? Can we maintain the appealing graph metaphor while preserving both the overall influence pattern and fine readability? To answer these questions, we first formally define the influence graph summarization problem. Second, we propose an end-to-end framework to solve the new problem. Our method can not only highlight the flow-based influence patterns in the visual summarization, but also inherently support rich graph attributes. Last, we present a theoretic analysis and report our experiment results. Both evidences demonstrate that our framework can effectively approximate the proposed influence graph summarization objective while outperforming previous methods in a typical scenario of visually mining academic citation networks.Comment: to appear in IEEE International Conference on Data Mining (ICDM), Shen Zhen, China, December 201

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    Exploring Causal Influences

    Get PDF
    Recent data mining techniques exploit patterns of statistical independence in multivariate data to make conjectures about cause/effect relationships. These relationships can be used to construct causal graphs, which are sometimes represented by weighted node-link diagrams, with nodes representing variables and combinations of weighted links and/or nodes showing the strength of causal relationships. We present an interactive visualization for causal graphs (ICGs), inspired in part by the Influence Explorer. The key principles of this visualization are as follows: Variables are represented with vertical bars attached to nodes in a graph. Direct manipulation of variables is achieved by sliding a variable value up and down, which reveals causality by producing instantaneous change in causally and/or probabilistically linked variables. This direct manipulation technique gives users the impression they are causally influencing the variables linked to the one they are manipulating. In this context, we demonstrate the subtle distinction between seeing and setting of variable values, and in an extended example, show how this visualization can help a user understand the relationships in a large variable set, and with some intuitions about the domain and a few basic concepts, quickly detect bugs in causal models constructed from these data mining techniques

    Bootstrapping Lexical Choice via Multiple-Sequence Alignment

    Get PDF
    An important component of any generation system is the mapping dictionary, a lexicon of elementary semantic expressions and corresponding natural language realizations. Typically, labor-intensive knowledge-based methods are used to construct the dictionary. We instead propose to acquire it automatically via a novel multiple-pass algorithm employing multiple-sequence alignment, a technique commonly used in bioinformatics. Crucially, our method leverages latent information contained in multi-parallel corpora -- datasets that supply several verbalizations of the corresponding semantics rather than just one. We used our techniques to generate natural language versions of computer-generated mathematical proofs, with good results on both a per-component and overall-output basis. For example, in evaluations involving a dozen human judges, our system produced output whose readability and faithfulness to the semantic input rivaled that of a traditional generation system.Comment: 8 pages; to appear in the proceedings of EMNLP-200
    • …
    corecore